Stata:CHFS中国家庭金融调查数据库清洗和处理

全文阅读:Stata:CHFS中国家庭金融调查数据库清洗和处理-D121| 连享会主页

目录


CHFS 仓库:CHFS: CHFS-中国家庭金融调查数据库Stata处理过程

1. 引言

对于实证研究者而言,数据是研究的重要原材料。巧妇难为无米之炊,通常很多同学写毕业论文喜欢用问卷调查数据,一般都是用发朋友圈求填问卷的方法来搜集数据。不过,这种方法存在较大缺陷,在答辩时,通常会引起答辩评委的质疑。其实,有很多免费的微观数据可以供研究者使用,这些数据包括中国健康与养老追踪调查数据( CHARLS ) 、中国家庭追踪调查数据 ( CFPS ) 以及中国家庭金融调查数据 ( CHFS )等等。一方面,这些微观数据库有很强的权威性和科学性,另一方面,数据内容十分丰富,也足以对社科领域的许多题目进行研究。

往往,使用这些数据有些许门槛,刚开始拿到数据手足无措。那么,我们该怎么处理这些微观数据呢?本文以西南财经大学的中国家庭金融调查 ( CHFS )为例,尝试介绍该微观数据库,并进行一些描述性分析。

全文阅读:Stata:CHFS中国家庭金融调查数据库清洗和处理-D121| 连享会主页

### 如何将CHFS数据与数字普惠金融指数合并 为了有效地将中国家庭金融调查CHFS数据中国数字普惠金融指数相结合,需遵循一系列严谨的数据处理方法合并策略。具体操作如下: #### 1. 数据准备阶段 确保两个数据集的时间范围一致非常重要。对于CHFS数据而言,其涵盖了多个年度的家庭财务状况记录;而数字普惠金融指数则提供了不同时间段内的地区金融服务水平评估。因此,在开始之前要确认两者覆盖相同的年份。 #### 2. 地理位置匹配 由于CHFS是以户为单位采集的信息,而数字普惠金融指数通常是按照行政区划发布的省级或市级层面数值,所以需要依据受访者的居住地将其分配至相应的行政区划内[^1]。这一步骤可以通过提取问卷中的地理位置字段来实现,并利用外部地理编码服务完成精确映射。 #### 3. 时间维度同步化 考虑到两套数据可能存在不同的更新频率以及统计周期差异,建议采用插值法或其他适当的方法调整时间序列的一致性,使得每一年度都能获得对应的数字普惠金融评分[^4]。 #### 4. 关键变量关联 接下来就是确定用于连接这两个大型表格的关键字段。通常情况下,“省份”加上“城市名称”的组合可以作为有效的索引项来进行一对一或多对多的关系建立。此外,还可以考虑引入额外的辅助属性如邮政编码等提高配对精度[^2]。 #### 5. 质量控制措施 在整个过程中实施严格的质量监控机制至关重要。应定期审查已配对样本的比例及其分布特征,及时发现并解决潜在偏差问题。同时也要注意保护个人隐私安全,防止敏感信息泄露[^5]。 ```python import pandas as pd # 假设 chfs_df 是 CHFS 的 DataFrame, df_digital_finance 是数字普惠金融指数的 DataFrame merged_data = pd.merge(chfs_df, df_digital_finance[['province', 'year', 'digital_finance_index']], on=['province', 'year'], how='left') ``` 通过上述步骤能够较为全面地整合来自CHFS家庭经济行为模式同各地实际受到的数字化金融服务程度之间的关系,为进一步深入分析提供坚实基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值