阅读全文: 事件研究和多期DID可视化新命令
作者: 高瑜 (格罗宁根大学)
邮箱: gaoyuashley@163.com
编者按: 本文主要参考了以下内容,特此致谢!
source:
- Title: eventbaseline:事件研究和多期DID可视化新命令
- Keywords: eventbaseline, xthdidregress, DID, 多期DID, DID图示, 事件研究法, Event Study
1. 简介
现代双重差分(DID)分析通常显示一个事件研究图,允许研究者评估处理组和对照组在处理前后趋势的差异。事件研究图允许研究者通过“视觉推断”来确定处理组的趋势是否在处理时间前后与对照组的趋势有显著偏离。
然而,传统的事件研究方法在处理异质性处理效应时往往力不从心,尤其是在涉及复杂的面板数据时,结果有时难以解释。为了解决这些挑战,Koren, Miklós(2024)编写了 eventbaseline
命令。
这一命令为我们提供了一种强大且灵活的方法,旨在处理通过 xthdidregress
(双重差分方法的一种扩展)生成的系数,使其能够生成相对基准期的事件研究图。这使得研究者可以清晰地观察处理效应在事件发生前后如何变化。
本文将详细介绍实现事件研究图的 Stata 命令 eventbaseline
的使用场景、方法原理、模型设定及其实际操作步骤。
2. 模型设定
在传统的事件研究中,我们通常会使用动态双向固定效应( TWFE )模型进行分析,但这种方法在面对异质性处理效应时容易产生偏差。而通过 eventbaseline
与 DID 方法 的结合,研究者可以更准确地估计出处理效应在不同时间点的变化。尤其是对于那些具有复杂结构的面板数据或多时间段的处理,eventbaseline
提供了更加清晰的效应图表。
2.1 主要优势
- 灵活的基准期设定:可以选择某个特定时间点或处理前多个时间段的平均值作为基准。
- 动态处理效应估计:展示事件前后多个时间点的效应,适用于分析滞后效应或渐进影响。
- 结合 DID 和事件研究:通过引入 DID 方法的思想,提高因果推断的可信性。
阅读全文: 事件研究和多期DID可视化新命令