二、信号滤波与分解
文章平均质量分 79
使用的工具为MATLAB
主要讲解的一些算法
追逐者-桥
本博客主要记录本人的学习笔记。相关笔记有:嵌入式、数字信号处理、FPGA开发、数字IC设计。
展开
-
二、信号滤波 —>均值滤波与中值滤波
均值滤波算法介绍:总结:matlab代码:x=0:2047;a=load('data.txt'); %运行data.txt文件要放到当前目录(current directory)中n=5; % n为模板长度,值可以改变mean = ones(1,n)./n; %mean为1×n的模板,各数组元素的值均为1/ny=conv(a,mean);y=y(1:length(y)-length(mean)+1);figure;subplot(1,2,1);plot(x..原创 2022-03-26 10:24:58 · 1069 阅读 · 0 评论 -
二、信号分解 —>经验模态分解(EMD)学习笔记
EMD学习笔记一、简述:经验模态分解法(EMD),基于瞬时频率、本征模态函数(Intrinsic Mode Function,IMF)的概念,能够将信号分解为若干个IMF分量,每个IMF表征信号的局部特征。依据的是数据自身的时间尺度特征来进行信号分解,无需预先设定任何基函数,因此具有自适应性。二、基础概念:解析信号为什么要进行信号的解析?采集的信号一般为时间尺度数据,要分析其特性一般把时间尺度变为频率尺度即信号的频率分析。如果把信号直接进行傅里叶变换后会使频域变为正频域和负频域(负频域原创 2020-09-09 09:31:19 · 36652 阅读 · 27 评论 -
二、信号分解—>局部均值分解(LMD)学习笔记
LMD学习笔记总述局部均值分解算法(LMD), LMD算法最大的特点就在依据信号本身的特征对信号的自适应分解能力,产生具有真实物理意义的乘积函数(PF)分量(每个PF分量都是一个纯调频信号和包络信号的乘积,且每个PF分量的瞬时频率具有实际物理意义。),并由此得到能够清晰准确反映出信号能量在空间各尺度上分布规律的时频分布,有利于更加细致的对信号特征进行分析。与此同时,局部均值分解算法(LMD)相较于模态分解的创始...原创 2020-09-09 09:35:46 · 12036 阅读 · 1 评论 -
二、信号分解 —> 变分模态分解(VMD)学习笔记
VMD学习笔记简述:变分模态分解由Konstantin Dragomiretskiy于2014年提出,可以很好抑制EMD方法的模态混叠现象(通过控制带宽来避免混叠现象)。与EMD原理不同,VMD分解方式是利用迭代搜索变分模型最优解来确定每个分解的分量中心频率及带宽,属于完全非递归模型,该模型寻找模态分量的集合及其各自的中心频率,而每个模态在解调成基带之后是平滑的,Konstantin Dragomiretskiy通过实...原创 2020-09-09 09:41:24 · 82555 阅读 · 59 评论