动手学深度学习
文章平均质量分 93
shlyyy
Keep Coding
展开
-
动手学深度学习:2.线性回归pytorch实现
对于标准深度学习模型,我们可以使用框架的预定义好的层。这使我们只需关注使用哪些层来构造模型,而不必关注层的实现细节。我们首先定义一个模型变量net,它是一个Sequential类的实例。Sequential类将多个层串联在一起。当给定输入数据时,Sequential实例将数据传入到第一层, 然后将第一层的输出作为第二层的输入,以此类推。在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential。但是由于以后几乎所有的模型都是多层的,在这里使用Sequential。原创 2023-11-04 16:00:41 · 791 阅读 · 1 评论 -
动手学深度学习:1.线性回归从0开始实现
我们必须定义模型,将模型的输入和参数同模型的输出关联起来。要计算线性模型的输出, 我们只需计算输入特征XXX和模型权重www的矩阵-向量乘法后加上偏置bbb。注意,上面的XwXwXw是一个向量,而bbb是一个标量,由于广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。"""线性回归模型"""因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里使用平方损失函数。"""均方损失"""原创 2023-11-04 15:05:07 · 545 阅读 · 0 评论