pandas.read_csv参数

pandas.read_csv函数用于读取CSV文件,参数包括filepath_or_buffer定义文件路径或对象,sep是列分隔符,header指定列名行,names为自定义列名,index_col用于指定行标签列,usecols选择所需列,squeeze将单列数据转换为Series。其他参数如dtype、engine、converters、parse_dates等控制数据类型、解析引擎、转换函数和日期解析。此函数返回一个DataFrame对象。
摘要由CSDN通过智能技术生成

pandas.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=’,’, delimiter=None, header=‘infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression=‘infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar=’"’, quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)

ctrl+f 自己搜

参数解释

filepath_or_buffer : str,路径对象或类文件对象
任何有效的字符串路径都是可接 字符串可以是URL。有效的URL方案包括http,ftp,s3和file。对于文件URL,需要主机。本地文件可以是:file://localhost/path/to/table.csv。

如果你想传入一个路径对象,pandas接受任何os.PathLike。

通过类似文件的对象,我们使用read()方法引用对象,例如文件处理程序(例如,通过内置open函数)或StringIO。

sep : str,默认’,’
分隔符使用。如果sep为None,则C引擎无法自动检测分隔符,但Python解析引擎可以,这意味着后者将被使用并通过Python的内置嗅探器工具自动检测分隔符csv.Sniffer。此外,长度超过1个字符且不同的分隔符’\s+‘将被解释为正则表达式,并且还将强制使用Python解析引擎。请注意,正则表达式分隔符很容易忽略引用的数据。正则表达式的例子:’\r\t’。

delimiter : str,默认None
别名为sep。

header : int,int列表,默认’推断’
用作列名的行号和数据的开头。默认行为是推断列名:如果没有传递名称,则行为相同,header=0并且从文件的第一行推断列名,如果显式传递列名,则行为与之相同 header=None。明确传递header=0以能够替换现有名称。标头可以是整数列表,其指定列上的多索引的行位置,例如[0,1,3]。将跳过未指定的干预行(例如,跳过此示例中的2)。请注意,此参数忽略注释行和空行if sk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值