pandas.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], sep=’,’, delimiter=None, header=‘infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression=‘infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar=’"’, quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None)
ctrl+f 自己搜
参数解释
filepath_or_buffer : str,路径对象或类文件对象
任何有效的字符串路径都是可接 字符串可以是URL。有效的URL方案包括http,ftp,s3和file。对于文件URL,需要主机。本地文件可以是:file://localhost/path/to/table.csv。
如果你想传入一个路径对象,pandas接受任何os.PathLike。
通过类似文件的对象,我们使用read()方法引用对象,例如文件处理程序(例如,通过内置open函数)或StringIO。
sep : str,默认’,’
分隔符使用。如果sep为None,则C引擎无法自动检测分隔符,但Python解析引擎可以,这意味着后者将被使用并通过Python的内置嗅探器工具自动检测分隔符csv.Sniffer。此外,长度超过1个字符且不同的分隔符’\s+‘将被解释为正则表达式,并且还将强制使用Python解析引擎。请注意,正则表达式分隔符很容易忽略引用的数据。正则表达式的例子:’\r\t’。
delimiter : str,默认None
别名为sep。
header : int,int列表,默认’推断’
用作列名的行号和数据的开头。默认行为是推断列名:如果没有传递名称,则行为相同,header=0并且从文件的第一行推断列名,如果显式传递列名,则行为与之相同 header=None。明确传递header=0以能够替换现有名称。标头可以是整数列表,其指定列上的多索引的行位置,例如[0,1,3]。将跳过未指定的干预行(例如,跳过此示例中的2)。请注意,此参数忽略注释行和空行if sk