pandas.read_csv 所有参数
- pandas.read_csv
-
- 参数详解
-
- 1. filepath_or_buffer(目标数据)
- 2. sep(分隔符)
- 3. delimiter(同sep,分隔符)
- 4. header(决定列名)
- 5. names(自定义列名,视情况与header配合使用)
- 6. index_col(决定行名)
- 7. usecols(根据列名返回子集)
- 8. dtype(设置数据类型)
- 9. engine(解析引擎)
- 10. converters(替换列中值)
- 11. true_values(哪些值可视为True)
- 12. false_values(哪些值可视为False)
- 13. skipinitialspace(跳过分隔符后面的空格)
- 14. skiprows(从文件头开始跳过某些行)
- 15. skipfooter(从文件末开始跳过某些行)
- 16. nrows(读取文件的部分行)
- 17. na_values(哪些可视为Na)
- 18. keep_default(解析时处理默认的NaN值)
- 19. na_filter(检测NaN)
- 20. verbose(NaN数量)
- 21. skip_blank_lines(跳过空行)
- 22. parse_dates(解析某些列为日期,条件允许时合并原始列)
- 23. infer_datetime_format(推断并解析日期)
- 24. keep_date_col(解析日期时,保留原始列)
- 25. date_parser(自定义解析日期的函数)
- 26. date_format(自定义日期格式)
- 27. dayfirst(DD/MM日期格式)
- 28. cache_dates(转换日期的缓存区)
- 29. iterator(返回迭代器)
- 30. chunksize(同上)
- 31. compression(解压)
- 32. thousands(千分位分割符)
- 33. decimal(可作为小数点的字符)
- 34. lineterminator(文件分行的字符)
- 35. quotechar(可视为引用的字符)
- 36. quoting(调控引用)
- 37. doublequote(是否合并相邻的引用)
- 38. escapechar(转义字符)
- 39. comment(可以理解为注释字符)
- 40. encoding(编码格式)
- 41. encoding_errors(编码错误处理)
- 42. dialect(依旧时解析方面)
- 43. on_bad_lines(对错误行的处理)
- 44. delim_whitespace(使用空白字符作为分隔符)
- 45. low_memory(内部解析时采用低内存)
- 46. memory_map(对象映射)
- 47. float_precision(浮点数转换精度)
- 48. storage_options(高级储存)
- 49. dtype_backend(与Numpy耦合)
- 返回:DataFrame或TextFileReader
- 返璞归真的使用
pandas.read_csv
read_csv专注于将逗号分隔值 (csv) 文件读入 DataFrame。
还支持选择性迭代或将文件分割成块。其他帮助可在 IO 工具的在线文档中找到。在这里,我只关心read_csv有哪些参数,这些参数可以做什么。
pandas.read_csv(filepath_or_buffer,
*,
sep=_NoDefault.no_default,
delimiter=None,
header='infer',
names=_NoDefault.no_default,
index_col=None,
usecols=None,
dtype=None,
engine=None,
converters=None,
true_values=None,
false_values=None,
skipinitialspace=False,
skiprows=None,
skipfooter=0,
nrows=None,
na_values=None,
keep_default_na=True,
na_filter=True,
verbose=False,
skip_blank_lines=True,
parse_datas=None,
infer_datetime_format=_NoDefault.no_default,
keep_date_col=False,
date_parser=_NoDefault.no_default,
date_format=None,
dayfirst=False,
cache_dates=True,
iterator=False,
chunksize=None,
compression='infer',
thousands=None
pandas.read_csv参数详解

本文聚焦于pandas.read_csv,它可将逗号分隔值 (csv) 文件读入DataFrame,还支持选择性迭代或分块读取。详细介绍了其49个参数,如filepath_or_buffer指定目标数据、sep为分隔符等,最后说明返回结果为DataFrame或TextFileReader。
最低0.47元/天 解锁文章
29万+

被折叠的 条评论
为什么被折叠?



