算法优化
夏天望月兔
硬件工程师,VC,python ,MATLAB,芯片,密码算法
展开
-
cannot import name ‘container_abcs‘ from ‘torch._six‘
import collections.abc as container_abcs原创 2022-05-24 11:21:41 · 1325 阅读 · 0 评论 -
conda 清华源 pip 清华源
python -m pip install --upgrade pippip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simpleWindows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改。.condarc 文件是隐形文件,点击查看选上文件扩展名找到文件打开channels..原创 2022-05-24 11:14:35 · 398 阅读 · 0 评论 -
‘Graph‘ object has no attribute ‘nodes_iter‘ in networkx
for H in networkx.connected_component_subgraphs(G): bestScore = -1.0 for n, d in H.nodes_iter(data=True): if d['Score'] > bestScore: bestScore = d['Score'] bestSV = n if bestSV is not None: selectedSV.原创 2021-10-09 17:02:10 · 806 阅读 · 0 评论 -
“poisson_cpu“ not implemented for ‘Long‘
return torch.poisson(self.rate.expand(shape))RuntimeError: "poisson_cpu" not implemented for 'Long'from torch.distributions import Bernoulli,Normal,Exponential,Poisson# Bernoullim = Bernoulli(torch.tensor([0.3]))#torch.tensor([0.3]) # 有 30% 可能性出现 1.原创 2021-09-23 09:17:22 · 943 阅读 · 0 评论 -
OR-Tools:6-路由问题(Routing)车辆路线,旅行商问题TSP
OR-Tools 解决的问题类型:Linear optimization Constraint optimization Mixed-integer optimization Bin packing Network flows Assignment Scheduling Routing路由问题:优化重要的解决问题是车辆规划方面,路线问题,成本问题车辆路线,其目标是为访问一组地点的车队找到最佳路线。通常,"最佳"是指总距离或成本最少的路线。下面是一些路由问题的示例:包裹.原创 2020-09-04 15:34:31 · 3354 阅读 · 1 评论 -
OR-Tools:5-调度问题(Scheduling)
OR-Tools 解决的问题类型:Linear optimization Constraint optimization Mixed-integer optimization Bin packing Network flows Assignment Scheduling Routing调度问题:调度:在特定时间为任务分配人员和资源。例如安排员工进行多班制,但须遵守一系列复杂的约束和人员配置要求 安排一个制造流程,该流程涉及在一组有限的计算机上执行许多任务,每台计算机一次.原创 2020-09-04 10:08:56 · 1567 阅读 · 0 评论 -
OR-Tools:4-分配问题(Assignment)
OR-Tools 解决的问题类型:Linear optimization Constraint optimization Mixed-integer optimization Bin packing Network flows Assignment Scheduling Routing分配问题:假设一组工作人员需要执行一组任务,并且对于每个工作人员和任务,将工作人员分配给该任务需要成本。问题是将每个工作人员最多分配给一个任务,没有两个工作人员执行相同的任务,同时最大限度地降低.原创 2020-09-04 09:53:09 · 1514 阅读 · 0 评论 -
OR-Tools:3-网络流问题(Network Flows)
OR-Tools 解决的问题类型:Linear optimization Constraint optimization Mixed-integer optimization Bin packing Network flows Assignment Scheduling Routing网络流:计算机科学中的许多问题可以通过由节点和节点之间的链接组成的图形来表示。例如网络流量问题,它涉及通过网络(如铁路系统)运输货物或材料。可以通过节点为城市且其弧线是城市之间的铁路线的图形来表.原创 2020-09-03 15:59:46 · 1493 阅读 · 6 评论 -
OR-Tools:2-包装问题,箱包问题(bin packing)
OR-Tools 解决的问题类型:Linear optimization Constraint optimization Mixed-integer optimization Bin packing Network flows Assignment Scheduling Routing包装问题:包装一组给定大小的项目到容器与固定容量。典型的应用是有效地将箱子装到送货卡车上。通常,由于容量限制,无法打包所有项目。在这种情况下,问题是查找最大总大小的项的子集,该子集将适合容器。两.原创 2020-09-03 15:10:08 · 2043 阅读 · 1 评论 -
OR-Tools:一个用于优化的开源软件 -0-简介与安装
算法优化一般目标是:缩小搜索范围,以找到最佳(或接近最佳)的解决方案。算法优化不得不提软件是OR-Tools:https://developers.google.com/optimization安装:python -m pip install --upgrade --user ortools# LINUXsudo apt-get -y install python3-dev python3-wheel python3-setuptools python3-six# for c..原创 2020-09-03 11:33:10 · 3717 阅读 · 0 评论 -
pandas文件读取与数据分析-excel,txt,pickle
pandas文件读取与数据分析-excel,txt前言一、read_csv二、使用步骤1.引入库2.读入数据总结欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入提示:文章写完后,目录可以自动生原创 2020-09-02 16:00:20 · 1065 阅读 · 0 评论 -
安装cv2失败,pip install cv2 不行 需要用opencv-python
import cv2时出错,没安装cv2,No module named 'cv2', 需要pip 安装,pip install cv2 error网上搜了下说pip install opencv-python然后又错哦raise ReadTimeoutError(self._pool, None, 'Read timed out.')搜了下说是源的问题,速度不行要用国内源pip install -i https://pypi.tuna.tsinghua.edu.cn/simple.原创 2020-09-01 15:45:43 · 9386 阅读 · 1 评论 -
OR-Tools:1-线性优化,整数优化和约束优化(Linear optimization,Mixed-integer optimization,Constraint optimization)
算法优化一般目标是:缩小搜索范围,以找到最佳(或接近最佳)的解决方案。算法优化不得不提软件是OR-Tools:https://developers.google.com/optimization安装:python -m pip install --upgrade --user ortoolsOR-Tools是一个用于优化的开源软件套件,可解决世界上最棘手的问题,包括车辆路线,流量,整数和线性编程以及约束编程。vehicle routing, flows, integer and line.原创 2020-09-03 11:38:19 · 3861 阅读 · 2 评论 -
优化算法Monte-Carlo算法--python 实现,佣金预测举例 可视化用seaborn
蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。原创 2020-08-18 13:26:20 · 1011 阅读 · 0 评论 -
优化算法相关 实时绘制训练过程中损失和准确率的变化趋势
安装optproblems 和fastprogress1.pip install optproblems该软件包包含一些用于黑盒优化的常见基准测试问题。包含的测试问题:二进制问题OneMax,LeadingOnes和LeadingOnesTrailingZeros以及用于多模式问题的三个实例生成器CEC 2005单目标问题集CEC 2007多目标问题集Dixon-Szegö系列进行全局优化DTLZ问题1-7多峰模型2步行鱼小组(WFG)工具包ZDT集合用于多目标优化Bi..原创 2020-08-18 11:53:28 · 1511 阅读 · 1 评论 -
Quadratic Assignment Problem 二次分配问题 QAP
二次分配问题(QAP)是数学优化或运筹学分支中最基本的组合优化问题之一,从Koopmans和Beckmann [1]首次提出的设施选址问题的范畴来看。该问题模拟了以下现实生活中的问题:QAP问题可描述为:已知有n个位置和n家工厂,各位置之间的距离矩阵设为D=(dij)n*n,各工厂之间的运输量矩阵为F=(fij)n*n。现要将这n家工厂建造在这n个位置上,使得总费用最小。设dij表示位置i与位置j之间的距离,fij位置i与位置j之间的费用。故工厂i建造在位置k且工厂j建造在位置l所导致的费...原创 2020-08-31 17:29:17 · 13252 阅读 · 0 评论