洛谷 P2568 GCD mobius反演

GCD

题目描述

给定正整数 n n n,求 1 ≤ x , y ≤ n 1\le x,y\le n 1x,yn gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y) 为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。

输入格式

只有一行一个整数,代表 n n n

输出格式

一行一个整数表示答案。

样例 #1

样例输入 #1

4

样例输出 #1

4

提示

样例输入输出 1 解释

对于样例,满足条件的 ( x , y ) (x,y) (x,y) ( 2 , 2 ) (2,2) (2,2) ( 2 , 4 ) (2,4) (2,4) ( 3 , 3 ) (3,3) (3,3) ( 4 , 2 ) (4,2) (4,2)


数据规模与约定
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 1 0 7 1\le n\le10^7 1n107

来源:bzoj2818。

本题数据为洛谷自造数据,使用 CYaRon 耗时 5 5 5 分钟完成数据制作。

Solve:

// 正解貌似是欧拉函数,不过mobius反演也可以做。。。
题目所求式子为 ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) ∈ P r i m e ] ,首先对该式子进行一定的化简变形。 原式 = ∑ p ∈ P r i m e ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = p ] = ∑ p ∈ P r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ [ g c d ( i , j ) = 1 ] 化简到这里感觉有些希望,下面先进行莫比乌斯反演的套路变换 = ∑ p ∈ P r i m e ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ n p ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ p ∈ P r i m e ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ 2 至此时间复杂度降至 O ( n 1.5 log ⁡ n ) ,还是过不去 . . . 这里式子还可以继续化简,属于一个常见的继续化简的技巧 令 T = p d ,我们转而枚举 T = ∑ T = 1 n ⌊ n T ⌋ 2 ∑ p ∣ T , p ∈ P r i m e μ ( T p ) 令 f ( T ) = ∑ p ∣ T , p ∈ P r i m e μ ( T p ) 观察 f ( T ) 的性质,发现 T ∈ P r i m e 时, f ( T ) = 1 接着我们观察一下 f ( p ∗ T ) 的性质 , 其中 p ∈ P r i m e 容易发现,当 p ∣ T 时, f ( p ∗ T ) = − μ ( T )       / / 最开始我以为是等于 − f ( T ) , 其实并不相等 , 因为 p 可能是超过 2 次的质因数 , 此时 f ( p ∗ T ) 应该为 0 而不是 f ( T ) 否则 f ( p ∗ T ) = − f ( T ) + μ ( T ) 至此可线性处理 f 函数,原式 = ∑ T = 1 n ⌊ n T ⌋ 2 f ( T ) ,通过预处理出 f 函数的前缀和结合数论分块,时间复杂度为 O ( n + n ) 题目所求式子为 \sum_{i = 1}^{n}\sum_{j = 1}^n[gcd(i, j) \in Prime],首先对该式子进行一定的化简变形。\\原式=\sum_{p\in Prime}\sum_{i = 1}^{n}\sum_{j = 1}^n[gcd(i,j)=p]\\=\sum_{p\in Prime}\sum_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{p}\rfloor}[gcd(i,j)=1]\\化简到这里感觉有些希望,下面先进行莫比乌斯反演的套路变换\\=\sum_{p\in Prime}\sum_{i=1}^{\lfloor \frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor \frac{n}{p}\rfloor}\sum_{d|gcd(i,j)}\mu(d)\\=\sum_{p\in Prime}\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\lfloor\frac{n}{pd}\rfloor^2\\至此时间复杂度降至O(\frac{n^{1.5}}{\log n}),还是过不去...\\这里式子还可以继续化简,属于一个常见的继续化简的技巧\\令T=pd,我们转而枚举T\\=\sum_{T=1}^n{\lfloor \frac{n}{T}\rfloor^2}\sum_{p|T, p\in Prime}\mu(\frac{T}{p})\\令f(T)=\sum_{p|T, p\in Prime}\mu(\frac{T}{p})\\观察f(T)的性质,发现T\in Prime时, f(T)=1\\接着我们观察一下 f(p * T)的性质, 其中p\in Prime\\ 容易发现,当p|T时,f(p * T)=-\mu(T)~~~~~//最开始我以为是等于-f(T), 其实并不相等, 因为p可能是超过2次的质因数, 此时f(p*T)应该为0而不是f(T)\\否则f(p*T)=-f(T)+\mu(T)\\至此可线性处理f函数,原式=\sum_{T=1}^n\lfloor \frac{n}{T} \rfloor^2f(T),通过预处理出f函数的前缀和结合数论分块,时间复杂度为O(n + \sqrt n) 题目所求式子为i=1nj=1n[gcd(i,j)Prime],首先对该式子进行一定的化简变形。原式=pPrimei=1nj=1n[gcd(i,j)=p]=pPrimei=1pnj=1pn[gcd(i,j)=1]化简到这里感觉有些希望,下面先进行莫比乌斯反演的套路变换=pPrimei=1pnj=1pndgcd(i,j)μ(d)=pPrimed=1pnμ(d)pdn2至此时间复杂度降至O(lognn1.5),还是过不去...这里式子还可以继续化简,属于一个常见的继续化简的技巧T=pd,我们转而枚举T=T=1nTn2pT,pPrimeμ(pT)f(T)=pT,pPrimeμ(pT)观察f(T)的性质,发现TPrime时,f(T)=1接着我们观察一下f(pT)的性质,其中pPrime容易发现,当pT时,f(pT)=μ(T)     //最开始我以为是等于f(T),其实并不相等,因为p可能是超过2次的质因数,此时f(pT)应该为0而不是f(T)否则f(pT)=f(T)+μ(T)至此可线性处理f函数,原式=T=1nTn2f(T),通过预处理出f函数的前缀和结合数论分块,时间复杂度为O(n+n )

code:

#include <bits/stdc++.h>
using namespace std;
#define int long long

const int N = 1e7 + 10;
int mu[N], f[N], primes[N], cnt, n;
bool st[N];

void init(int n = N - 10) {
	mu[1] = 1;
	for (int i = 2; i <= n; i++) {
		if (!st[i]) {
			primes[cnt++] = i;
			mu[i] = -1;
			f[i] = 1;
		}

		for (int j = 0; primes[j] <= n / i; j++) {
			st[i * primes[j]] = true;
			if (i % primes[j] == 0) {
				mu[i * primes[j]] = 0;
				f[i * primes[j]] = mu[i];
				break;
			}
			mu[i * primes[j]] = -mu[i];
			f[i * primes[j]] = -f[i] + mu[i];
		}

	}
	for (int j = 1; j <= n;j ++) {
		f[j] = f[j - 1] + f[j];
	}
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	int n;
	cin >> n;
	init(n);
	int res = 0;
	for (int l = 1, r; l <= n; l = r + 1) {
		r = n / (n / l);
		res = res + (n / l) * (n / l) * (f[r] - f[l - 1]);
	}
	cout << res << "\n";
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值