#莫比乌斯反演,线性筛,整除分块#洛谷 2257 YY的GCD

题目

给定 n n n, m m m,求 1 ≤ x ≤ n 1\leq x\leq n 1xn, 1 ≤ y ≤ m 1\leq y\leq m 1ym g c d ( x , y ) gcd(x, y) gcd(x,y)为质数的 ( x , y ) (x, y) (x,y)有多少对


分析

f ( d ) = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = d ] f(d)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d] f(d)=i=1nj=1m[gcd(i,j)=d]
F ( n ) = ∑ n ∣ d f ( d ) = ⌊ N n ⌋ ⌊ M n ⌋ F(n)=\sum_{n|d}f(d)=\lfloor\frac{N}{n}\rfloor\lfloor\frac{M}{n}\rfloor F(n)=ndf(d)=nNnM
A n s = ∑ p ∈ p r i m e f ( p ) Ans=\sum_{p\in prime}f(p) Ans=pprimef(p)
经过莫比乌斯反演,变成了
A n s = ∑ p ∈ p r i m e ∑ p ∣ d μ ( ⌊ d p ⌋ ) F ( d ) Ans=\sum_{p\in prime}\sum_{p|d}\mu(\lfloor\frac{d}{p}\rfloor)F(d) Ans=pprimepdμ(pd)F(d)
最后
A n s = ∑ T = 1 m i n ( n , m ) ⌊ n T ⌋ ⌊ m T ⌋ ( ∑ t ∣ T μ ( ⌊ T t ⌋ ) ) Ans=\sum_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\sum_{t|T}\mu(\lfloor\frac{T}{t}\rfloor)) Ans=T=1min(n,m)TnTm(tTμ(tT))
然后最终转换成这个式子可以发现 O ( n ) O(n) O(n)的时间还是过不了,于是就要用到整除分块了,洛谷2261余数之和(一道比较基础的整除分块题)
余数之和题目链接
That‘s all


代码

#include <cstdio>
#include <vector>
#define N 10000001
#define min(a,b) ((a)<(b))?(a):(b)
#define rr register
using namespace std;
int mobius[N],v[N],now[N]; long long s[N];
inline int in(){
	rr int ans=0; rr char c=getchar();
	while (c<48||c>57) c=getchar();
	while (c>47&&c<58) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
	return ans;
}
void print(long long ans){
	if (ans>9) print(ans/10);
	putchar(ans%10+48);
}
signed main(){
	mobius[1]=1; vector<int>prime;
	for (rr int i=2;i<N;++i){//莫比乌斯函数
		if (!v[i]) v[i]=i,mobius[i]=-1,prime.push_back(i);
		for (rr int j=0;j<prime.size()&&i*prime[j]<N;++j){
			v[i*prime[j]]=prime[j];
			if (i%prime[j]) mobius[i*prime[j]]=-mobius[i]; else break;
		}
	}
	for (rr int j=0;j<prime.size();++j)
	for (rr int i=1;i*prime[j]<N;++i) now[i*prime[j]]+=mobius[i];//求每个数的约数的莫比乌斯前缀和
	for (rr int i=1;i<N;++i) s[i]=s[i-1]+now[i];//前缀和
	rr int t=in();
	while (t--){
		rr int n=in(),m=in();
		if (n>m) n^=m,m^=n,n^=m;//交换
		rr long long ans=0;
		for (rr int l=1,r;l<=n;l=r+1){
			r=min(n/(n/l),m/(m/l));//l到r为一个区间
			ans+=1ll*(n/l)*(m/l)*(s[r]-s[l-1]);//整除分块
		}
		print(ans); putchar(10);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值