第五课多元函数偏导与全微分

,邻域点集,区域

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
首先关于边界有两种情况,一是包含,二是不包含,包含的叫闭区域,不包含的叫开区域(然后关于区域这个名词,这里说是开区域与闭区域的统称,但在复变函数中区域单指开区域,所以,呃),然后看一下内点的概念,所谓内点就是里面的点,不包含边界点,边界点就是边界的点,对于开区域来说边界点不在区域上,而对于闭区域,边界点在区域上,聚点的话就是内点加上边界点,所以对于开区域来说,聚点不都在区域上。连通和不连通很简单不说了。
一个点的话算闭集因为没有内点
在这里插入图片描述
这个注意一下

二元函数定义与连续与极限

定义

在这里插入图片描述
比如二元函数求定义域就是求使式子有意义的x,y的点集

极限

在这里插入图片描述
在这里插入图片描述

聚点使边界点也被包括进极限存在的范围内,在平面上趋近一个点有无数种方法,可以沿不同方向的直线也可以沿着抛物线。
在这里插入图片描述
那么,怎么样才算沿着某个方向趋近目标点呢,这里有个利用参数的思想,就是讲x或y作为参数,然后参数变化,相当于点沿着曲线的方向移动,比如说我想沿着y=3x方向趋近原点,那么我把y换成3x,然后让x趋近零,这样就变成了一元函数的极限了。抛物线也是同理。
但是由于有无数条路经,用这种方法来证明极限存在显然不合适,所以这个方法一般用于证明极限不存在(比如说我们取了某个方向,发现极限不存在,或者是取了好几个方向(这个可以用y=kx这样的含参数的曲线,看看k变化时会不会影响极限值)发现极限值不一样)

下面介绍极限是某个值的证明方法:

在这里插入图片描述

定义法

在这里插入图片描述
就是找到δ使得任意的ε都成立,适当利用放缩和初始条件限定

有界那个

这个很简单,但是出现频率极高,有时候没注意就看不出来
写两个
在这里插入图片描述
这种不太容易看出来

变量代换

比如下面这个例子
在这里插入图片描述

连续

就是说在某个区域内连续,趋近于某个点的极限值就是该点的函数值

其他

不说了😁

连续

在这里插入图片描述
在某点的极限等于该点的函数值(首先得在该点有定义),但是这样一个一个证过去肯定不行,所以有一个重要的结论,就是二元初等函数在其定义域内连续,所谓二元初等函数就是一元初等函数经过有限次运算(复合运算也算)成的二元函数
在这里插入图片描述
在这里插入图片描述
这些一元函数的常用结论对于二元函数也成立

全微分

在这里插入图片描述

可微必要条件

全微分存在三个必要条件:
连续:Δx,Δy趋于零时Δz趋于零
偏导存在:A,B能算出来
ρ是增量距离高阶的无穷小
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
前两个经常用于判断这个函数不可微
在这里插入图片描述

可微充要条件

在这里插入图片描述
所以上面的那三个必要条件都成立,就是充要条件了
在这里插入图片描述
在这里插入图片描述

可微充分条件

在这里插入图片描述
在这里插入图片描述

全微分公式及其应用

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

小结

在这里插入图片描述
在这里插入图片描述

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

谨慎的海绵

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值