题意:给出一段序列,要求我们把每一个子序列的最大值减去最小值的和加起来最后输出,所以我们可以拆分为将每一个序列的最大值相加,再将每一个序列的最小值相加最后输出差值即可。
思路:我们采取单调栈的思路来解决。我们以第二个样例为例。具体操作如下图所示
这是我们的每一个序列最大值累加的情况 ,我们要要理解一个东西Nsum表示当前序列中每一个子序列的情况,我们要将每一个子序列的情况都要累加到Msum得到我们的最终结果。例如7相当于我们的第一个子序列,所以我们Nsum要+7,而放入5后我们发现其满足单调栈的规律,我们的Nsum就要+5*(2-1),因为我们增加了一个单序列5,和新序列7,5我们这个时候的子序列的最大值的和就是7+5。
最后我们根据这个最大的值累加的算法就可以将最小的值累加的值算出来。最后我们直接输出Msum1-Msun2即可。
具体代码解释如下
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll a[500000];
int nums;
ll zhan1()
{
ll s1=0,sum=0;//sum为Nsum,s1为Msum
vector<ll>t;
t.push_back(0);//0做为栈底
for(int i=1;i<=nums;i++)
{
while(t.size()>1&&a[i]>a[t[t.size()-1]])//如果我们发现当前栈顶不合规矩
{
sum-=(t[t.size()-1]-t[t.size()-2])*a[t[t.size()-1]];//我们就要去掉它,因为当前值要做新序列的最大值。
t.pop_back();
}
sum+=(i-t[t.size()-1])*a[i];//每一次我们都要将当前值的下标减去与次栈顶下标值与当前值的乘积,表示新增子序列的的最大值和,与之前的序列组成新序列的最大值之后相加。
s1+=sum;//所以序列的最大值之和
t.push_back(i);
}
return s1;
}
ll zhan2()//只是改变了以下符号
{
ll s1=0,sum=0;
vector<ll>t;
t.push_back(0);
for(int i=1;i<=nums;i++)
{
while(t.size()>1&&a[i]<a[t[t.size()-1]])
{
sum-=(t[t.size()-1]-t[t.size()-2])*a[t[t.size()-1]];
t.pop_back();
}
sum+=(i-t[t.size()-1])*a[i];
s1+=sum;
t.push_back(i);
}
return s1;
}
int main()
{
cin>>nums;
for(int i=1;i<=nums;i++)cin>>a[i];
ll answer=0;
answer+=zhan1();
answer-=zhan2();
cout<<answer;
}