最近看了很多网上的堆排序算法,有一些讲解的很是透彻,但代码实现总是多多少少存在问题,我自己最近通过学习写了一个测试代码,在VS上通过了测试,希望对大家有所帮助,其中存在一些不足,也欢迎大家来一起改进、学习。
#include<iostream>
using namespace std;
//堆本身是一个完全二叉树,可以用数组存储,叶子节点的索引号是父节点的(i-1)/2
//下面给出小顶堆的实现代码
void swap(int *a,int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}
//up函数
void sift_up(int a[],int n)
{
int i = (n-1)/2;
if(a[i]>a[n]&&i>=0)
{
swap(&a[i],&a[n]);
sift_up(a,i);
}
}
//down函数
void sift_down(int a[],int i,int n)
{
int k = 2*i + 1;
int j = 2*i + 2;
if(a[i]>a[k] && a[k]<a[j] && k<n)
{
swap(&a[k],&a[i]);
sift_down(a,k,n);
}
if(a[i]>a[j] && a[j]<a[k] && j<n)
{
swap(&a[i],&a[j]);
sift_down(a,j,n);
}
}
//插入堆,即将数据放在数组最后,其父节点索引为(i-1)/2,使其不断向上与其父节点比较,当且仅当其值大于等于其父节点时,跳出循环
void insert_heap(int a[],int n,int num)
{
a[n] = num;
sift_up(a,n);
}
//删除堆,根据定义可知,删除一个节点必须从0开始,故可以将0与最后一个位置互换,然后再调整堆为小顶堆
void delete_heap(int a[],int n)
{
swap(&a[0],&a[n-1]);
sift_down(a,0,n-1);
}
//建立堆,将数组排成堆,将非叶子结点(n/2 -1开始)分别向下调整即可
void create_heap(int a[],int n)
{
for(int i = n/2 -1;i >= 0;i--)
sift_down(a,i,n-1);
}
//堆的排序,无非就是不断从0位置取数据,调整堆的过程
void heap_sort(int a[],int n)
{
for(int i = n-1;i>=1;i--)
{
swap(&a[0],&a[i]);
sift_down(a,0,i);//此处存在的一个问题:因为为了保证每次交换到最后一个数组的数据不再参与堆的调整,故i在不断减小,但是当为1和2时
//无法进行有效判断,于是在循环后加了一句if(a[0]<a[1]),希望大家有好的解决方法可以分享一下
}
if(a[0]<a[1])
swap(&a[0],&a[1]);
}
//测试代码
void main()
{
int a[10] = {7,5,8,2,4,1,3,0,9,6};
create_heap(a,10);
for(int i = 0;i<10;i++)
cout<<a[i]<<" ";
cout<<endl;
heap_sort(a,10);
for(int i = 0;i<10;i++)
cout<<a[i]<<" ";
cout<<endl;
int b[10] = {7,5,8,2,4,1,3,0,9,6};
create_heap(b,10);
for(int i = 0;i<10;i++)
cout<<b[i]<<" ";
cout<<endl;
delete_heap(b,10);
for(int i = 0;i<9;i++)
cout<<b[i]<<" ";
cout<<endl;
int c[10] = {7,5,11,2,4,1,3,0,9,6};
create_heap(c,10);
for(int i = 0;i<10;i++)
cout<<c[i]<<" ";
cout<<endl;
insert_heap(c,9,8);//此处只是将11换成8,然后重新调整堆,但意思是一样的,主要为证明其可以向上重新调整堆
for(int i = 0;i<10;i++)
cout<<c[i]<<" ";
cout<<endl;
system("pause");
return;
}