Sklearn,是一个python库,专门用于机器学习的模块。包括了分类,回归,无监督,数据降维,数据预处理等常见的机器学习算法。推荐使用Anaconda,本身自带了很多常用的库,而且安装库也特别的方便。本次学习主要了为了进行长文本的分类。
目录
0.TFIDF
个人感觉比gensim中的好用,因为有很多参数可以对数据进行处理,比如过滤词汇、归一化等等。
vec = TfidfVectorizer(ngram_range=(1, 2), min_df=5, max_df=0.6,use_idf=1,smooth_idf=1, sublinear_tf=1)
train_word_seg_vec = vec.fit_transform(train_word_seg)
test_word_seg_vec = vec.transform(test_word_seg)
参数说明:
ngram_range: tuple(min_n, max_n)
要提取的n-gram的n-values的下限和上限范围,在min_n <= n <= max_n区间的n的全部值
min_df:float in range [0.0, 1.0] or int, optional, 1.0 by default
当构建词汇表时,严格忽略低于给出阈值的文档频率的词条,语料指定的停用词。如果是浮点值,该参数代表文档的比例,整型绝对计数值,如果词汇表不为None,此参数被忽略。
max_df: float in range [0.0, 1.0] or int, optional, 1.0 by default
当构建词汇表时,严格忽略高于给出阈值的文档频率的词条,语料指定的停用词。如果是浮点值,该参数代表文档的比例,整型绝对计数值,如果词汇表不为None,此参数被忽略。
use_idf:boolean, optional
&nb

本文介绍了使用Sklearn进行文本分类的学习,涵盖了TFIDF、线性分类、SVM、KNN、朴素贝叶斯和多层感知器分类器(MLPClassifier)。重点讨论了各种算法的特性和参数,适合长文本分类任务。
最低0.47元/天 解锁文章
3855

被折叠的 条评论
为什么被折叠?



