
Agent智能体
文章平均质量分 86
介绍通用AI Agent智能体的开发知识
码农三叔
学编程20年,乐于奉献,一往无前
展开
-
(12-5-03)仿Manus通用AI Agent系统:Agent模块(3)链式推理Agent
文件planning.py实现了类PlanningAgent,这是一个用于创建和管理解决任务的计划的代理。类PlanningAgent使用一个规划工具来构建和管理结构化的计划,并通过单个步骤跟踪任务的进展,直到任务完成。代理能够处理多个工具调用,并跟踪每个步骤的执行状态,确保任务按计划进行。文件cot.py实现了链式推理(Chain of Thought, CoT)代理类CoTAgent,专注于展示大型语言模型的推理过程,而不执行任何工具。类CoTAgent通过处理一条推理链,模拟思维的步骤来得出结论。原创 2025-05-25 09:38:10 · 347 阅读 · 3 评论 -
(12-5-02)仿Manus通用AI Agent系统:Agent模块(2)浏览器Agent
文件browser.py实现了浏览器Agent,使用 browser_use 库控制浏览器,能够执行网页浏览、与页面元素互动、填充表单、提取内容等操作,完成任务。浏览器Agent能够获取浏览器的当前状态(如 URL、标签信息和截图),并根据这些信息调整执行策略,以适应不同的浏览器操作。原创 2025-05-21 18:29:35 · 248 阅读 · 2 评论 -
(12-5-01)仿Manus通用AI Agent系统:Agent模块(1)抽象基类
文件base.py定义了抽象基类BaseAgent,负责管理智能代理的状态、记忆和执行流程。类BaseAgent提供了状态转换、记忆管理和基于步骤的执行循环等基础功能,子类实现了step 方法来定义具体的行为。Agent模块是本项目的核心部分,负责管理和协调多个子模块,以便执行任务和处理不同类型的请求。Agent模块包含了多种工具和方法,如浏览器操作、推理链(COT)和任务规划,用于支持复杂的决策和自动化流程。通过不同的工具和策略,Agent模块能够灵活应对不同的场景和需求,提供强大的功能扩展和可定制化。原创 2025-05-21 17:40:03 · 246 阅读 · 0 评论 -
(12-4-04)仿Manus通用AI Agent系统:Web搜索工具
WebSearch 是一个用于执行网络搜索的工具类,支持调用多个搜索引擎 API(如 Google、Bing、DuckDuckGo、Baidu)进行搜索,并返回相关链接列表。该类通过配置确定搜索引擎的优先级,首选引擎失败后会自动切换到备选引擎。如果所有引擎均失败,系统会根据配置的重试设置(默认最多重试三次,每次间隔 60 秒)进行重试。WebSearch 使用装饰器处理重试逻辑,并在请求频率超限或发生错误时切换到其他引擎。搜索功能通过异步方法实现,支持自定义搜索查询和返回结果数量,确保在多种情况下提供可靠的原创 2025-05-19 11:03:45 · 246 阅读 · 1 评论 -
(12-4-03)仿Manus通用AI Agent系统:聊天工具
文件create_chat_completion.py用于生成具有指定输出格式的结构化聊天完成,可以灵活地处理不同类型的响应(例如字符串、列表、字典或自定义模型)。该类根据提供的响应类型动态构建 JSON 模式,处理必填字段,并支持响应数据的类型转换。它还允许创建具有不同字段类型的复杂响应结构。原创 2025-05-06 20:43:31 · 294 阅读 · 1 评论 -
(12-4-02)仿Manus通用AI Agent系统:计划管理工具
上述每个计划都包含唯一的 plan_id、标题、步骤列表,以及对应的状态和备注信息。工具提供了详细的错误处理,确保传递的参数符合要求,并对计划的更新操作提供智能的状态保持机制。文件planning.py是一个用于创建和管理计划的工具,适用于处理复杂任务的分步规划。原创 2025-05-06 20:42:02 · 313 阅读 · 0 评论 -
(12-3)仿Manus通用AI Agent系统:项目配置
文件还包括视觉模型(Vision LLM)的相关配置、可选的浏览器自动化设置(如是否启用无头模式、代理支持等)、搜索引擎偏好(如 Google、Baidu 或 DuckDuckGo),以及用于沙盒环境(如 Python 容器运行环境)的相关参数。在Ollama中接入DeepSeek API后,可以在文件config.example.toml中进行如下配置,这样也可以基于DeepSeek模型实现本Agent项目。通过高效的流程控制和任务管理机制,确保代理间的协作顺畅,并提升自动化任务的执行效率。原创 2025-04-30 14:47:35 · 505 阅读 · 0 评论 -
(12-1)仿Manus通用AI Agent系统:背景介绍+项目介绍
在当前数字化和智能化迅猛发展的时代背景下,各行各业对智能代理系统的需求不断攀升。企业、政府及个人用户纷纷寻求利用人工智能技术来实现任务自动化、数据智能处理和决策支持,以降低运营成本、提升工作效率,并在激烈的市场竞争中抢占先机。通用AI Agent正是在这样的需求驱动下应运而生,它能够灵活适应各种应用场景,从自动化客服、智能助理到企业内部流程优化,均能发挥巨大作用。与此同时,Manus凭借其强大的多功能性和灵活的扩展能力,在智能代理领域迅速走红。原创 2025-04-28 17:17:05 · 371 阅读 · 1 评论 -
(11-6-02)基于深度强化学习的量化交易Agent:DRL、最小方差和DJIA的可视化
(2)使用 Plotly 创建了多个散点图 (trace0_portfolio、trace1_portfolio、trace2_portfolio 等),这些图分别表示 A2C 模型的投资组合收益、DJIA 收益以及最小方差投资组合的收益。在上述代码中,trace0_portfolio 表示 A2C 模型的投资组合收益曲线,trace1_portfolio 表示 DJIA 的收益曲线,trace2_portfolio 表示最小方差投资组合的收益曲线。图10-8 投资组合收益的可视化图。原创 2025-04-28 17:14:52 · 481 阅读 · 0 评论 -
(11-6-01)基于深度强化学习的量化交易Agent:优化投资组合
(3)下面的代码用于计算最小方差投资组合的资产价值。随后,使用EfficientFrontier模块进行投资组合分配,设置权重的上下限为(0, 0.1),并通过min_volatility()方法获取最小方差投资组合的原始权重。最小方差投资组合分配是一种通过优化投资组合权重,以最小化整个投资组合的方差(波动性)的方法。(4)计算使用A2C模型、最小方差投资组合以及基准(Dow Jones指数)的累积收益率,将每日收益率序列累积,得到了它们相对于初始值的总体增长情况,用于比较和评估不同投资策略的绩效。原创 2025-04-27 21:36:38 · 743 阅读 · 1 评论 -
(11-5)基于深度强化学习的量化交易Agent]:回测交易策略
上面的输出结果展示了基准(道琼斯工业平均指数)的绩效统计信息,基准的绩效指标包括年化收益率、累积收益率、年化波动率、夏普比率等。这些指标反映了当前策略在回测期间的收益、波动性、风险调整后的绩效等多个方面信息,其中夏普比率、卡玛比率、索提诺比率等是衡量策略风险调整后收益的重要指标,而最大回撤则是衡量策略可能面临的最大损失。通过绘制回测结果的可视化图来分析交易策略的性能,这些可视化图通常包括策略资产价值随时间的变化、策略每日收益率、基准(如道琼斯工业平均指数)的表现等,有助于更直观地理解策略的优势和劣势。原创 2025-04-25 17:40:28 · 1014 阅读 · 0 评论 -
(11-4-03)基于深度强化学习的量化交易Agent(1):Agent交易模型(3)基于TD3算法+交易测试
(1)下面的代码划分了名为df的数据集,选择了日期范围从'2020-010-01'到'2021-10-31',并使用之前定义的参数env_kwargs创建了一个名为e_trade_gym的股票交易环境。(5)将df_daily_return数据框保存为 CSV 文件(df_daily_return.csv),并显示了 df_actions 数据框的前几行内容,其中包含了每个交易日的交易动作信息。(4)下面的代码显示了 df_daily_return 数据框的前几行内容,该数据框包含了每日的回报率信息。原创 2025-04-24 17:05:44 · 817 阅读 · 0 评论 -
(11-4-02)基于深度强化学习的量化交易Agent(1):Agent交易模型(2) 基于DDPG算法+基于SAC算法
SAC_PARAMS 包含了 SAC 模型的关键参数设置,这个模型使用了 FinRL 库中的 get_model 方法,并指定模型类型为 "sac",同时传递了 SAC 模型的参数。具体来说,model=model_ddpg表示使用之前创建的DDPG模型,tb_log_name='ddpg'表示TensorBoard日志的名称,total_timesteps=50000表示总的训练步数。trained_sac 包含了训练完毕的 SAC 模型,该模型已经学习了在给定环境下执行股票交易策略的参数。原创 2025-04-23 15:46:28 · 705 阅读 · 0 评论 -
(11-4-01)基于深度强化学习的量化交易Agent(1):Agent交易模型(1)基于A2C算法+基于PPO算法
训练完成后,返回已训练的 A2C 模型 trained_a2c。(3)将已经训练好的 A2C 模型保存到指定的文件路径 /content/trained_models/trained_a2c.zip,保存模型的目的是为了在以后的应用中重新加载和使用。(2)使用上面创建的PPO模型在环境中进行了8万步的训练,这将对模型进行学习,以在股票交易环境中执行交易决策。(1)使用FinRL库中的DRLAgent类初始化一个强化学习代理(agent),然后创建了一个使用PPO算法的模型,并传递了一些PPO算法的参数。原创 2025-04-22 10:55:24 · 944 阅读 · 3 评论 -
(11-3)基于深度强化学习的量化交易Agent:构建交易环境
这种环境的向量化可以带来训练速度的显著提升,特别是在使用深度学习模型进行训练时,因为模型的计算可以在多个环境之间并行进行。通过使用get_sb_env()方法,原始的股票交易环境被包装成了Stable-Baselines3库中的向量化环境,以便与该库中的强化学习算法进行集成。在上述代码中,print(type(env_train))语句用于打印输出env_train的类型,以确认其为Stable-Baselines3中的环境类型。(5)render():用于返回当前环境状态的表示,用于可视化或记录。原创 2025-04-21 20:48:34 · 970 阅读 · 2 评论 -
(11-2)基于深度强化学习的量化交易Agent:数据处理
这行代码的目的是展示经过协方差矩阵添加后的数据的头部,以便查看数据的结构和内容。通过df.shape,可以确认处理后的数据的规模,确保数据准备步骤没有导致数据维度的意外变化。这行代码的目的是查看下载的金融数据的规模,即数据框中的行数和列数。(3)通过如下代码显示 DataFrame df 的前几行数据,目的是展示经过预处理和特征工程后的数据的头部,以便查看数据的结构和内容。(3)通过df.head()显示DataFrame df 的前几行数据,目的是展示下载的金融数据的头部,以便查看数据的结构和内容。原创 2025-04-21 20:43:52 · 925 阅读 · 0 评论 -
(11-1)基于深度强化学习的量化交易Agent:背景介绍+项目介绍
金融市场一直以来都是一个信息量巨大、高度复杂且动态变化的领域。随着科技的不断发展,量化交易作为一种基于数据分析和数学模型的交易方式变得日益重要。传统的人工决策面临着市场波动、信息滞后等问题,而量化交易通过算法和模型,能够更迅速、精确地应对市场变化,为投资者提供更可靠的交易策略。感知市场状态:智能体通过获取金融市场数据(如价格、成交量等)来感知市场状态,类似于视觉和听觉等感知能力。原创 2025-04-20 15:36:50 · 908 阅读 · 0 评论 -
(10-4-02)自动驾驶决策Agent:路径规划(2)RRT算法
此文件实现了多个功能函数,包括全局变量的初始化、移动基地客户端、坐标转换函数、距离计算函数、旋转函数、前往目标函数、路径跟随函数、订阅里程计和地图信息的回调函数、地图转换为图像函数以及发布路径点函数。RRT(Rapidly-exploring Random Tree,快速探索随机树)算法是一种用于路径规划的基于树结构的算法,通过在自由空间中随机生成点,并将这些点逐渐连接起来形成树结构,以便找到起点到目标点的可行路径。在指定的地图上生成随机点并逐步连接,最终找到起点到目标点的可行路径。图9-1 执行效果。原创 2025-04-18 20:04:04 · 878 阅读 · 2 评论 -
(10-4-01)自动驾驶决策Agent:路径规划(1)跟墙壁行驶+ A*算法路径规划
整个项目通过ROS的launch文件进行配置和启动,可视化部分使用RViz工具实时展示机器人的运动轨迹和地图信息,为用户提供了一个方便直观的界面来监控和调试路径规划的效果。文件a_star_main.py实现了一个 ROS 节点,实现了 A* 算法进行路径规划,并利用 ROS 框架中的消息订阅和发布功能与机器人进行交互。具体来说,实现了如下所示的功能。该节点在 ROS 框架中运行,通过订阅机器人的激光雷达和里程计信息,实时更新机器人的位置和地图信息,并根据新的目标点进行路径规划和路径跟踪。原创 2025-04-18 19:59:03 · 566 阅读 · 1 评论 -
(10-3)自动驾驶决策Agent:障碍物和边界检测
文件global_rrt_detector.cpp实现了一个 ROS 节点,用于检测全局的障碍物和边界,并根据检测结果发布目标点。在本项目中,文件global_rrt_detector.cpp和文件local_rrt_detector.cpp实现了ROS节点,用于实现路径规划和障碍物检测功能。通过订阅地图和RViz点击点,实现了随机采样、最近点查找、障碍物检测和边界识别等功能,最终发布探索目标和可视化数据,以便机器人在当前位置附近规划安全路径和探索目标。原创 2025-04-17 15:51:11 · 892 阅读 · 1 评论 -
(10-2)自动驾驶决策Agent:公用文件
(1)文件mtrand.h定义了一个名为MTRand_int32的类,实现了Mersenne Twister伪随机数生成器,以及派生类MTRand、MTRand_closed、MTRand_open和MTRand53,分别用于生成不同范围的双精度浮点数。在本项目中,公用文件负责实现一系列方法和类的声明、原型和定义,这些方法和类用于实现随机数生成、向量运算等功能,这些功能在自主探索和路径规划算法中被用到。具体来说,这些文件定义了用于生成随机浮点数、计算向量之间的距离、查找最近点、检查障碍物等功能的方法和类。原创 2025-04-16 17:17:50 · 421 阅读 · 1 评论 -
(10-1)自动驾驶决策Agent:背景介绍+项目介绍
随着机器人技术的不断发展,自主路径导航成为了机器人研究领域的重要课题之一。机器人被广泛应用于各种复杂环境,如家庭服务、工业生产、物流配送、太空探索以及灾难救援等场景。在这些场景中,机器人需要具备在未知或已知环境中自主移动的能力,以完成各种任务,如物品运输、区域巡逻、环境监测和数据收集等。自主路径导航是实现机器人智能化的关键技术之一。它使机器人能够在复杂多变的环境中,根据给定的目标位置,自主规划出一条最优或次优的路径,并沿着该路径准确地移动,同时避开各种障碍物。原创 2025-04-16 17:15:21 · 867 阅读 · 0 评论 -
(9-5-02)智能客服Agent开发:API服务(2)对话管理+队列消息处理+事件路由
文件message_processor.py定义了类MessageProcessor,主要用于处理消息队列中的消息,并通过与代理 (agent) 交互生成回复。若没有找到相应的处理函数,将调用默认处理器。类DialogsManager主要处理活动对话的加载、更新、获取、添加、新对话的开启、关闭对话、更新对话信息等操作,并且会与数据库和代理进行交互,以保证对话数据的同步和更新。本项目提供了用于前端调用的 API 接口和实时通信(如 WebSocket)的支持,大家可以以此为基础,自行构建具体的聊天对话界面。原创 2025-04-15 12:25:45 · 422 阅读 · 2 评论 -
(9-5-1)智能客服Agent开发:API服务(1)
此文件包含了数据集重载、对话加载与卸载、消息添加、对话开启、关闭和更新等操作,同时还负责初始化与外部 API、数据库、WebSocket 以及向量存储等组件的交互,确保整个对话系统能够高效、稳定地运作。“API服务”模块提供了处理各种API相关操作的后端服务,包括对话管理、路由事件、处理消息、与数据库交互以及建立WebSocket连接等功能。该模块在促进无缝API交互和实时通信管理方面发挥了重要作用。能够处理对话和消息的管理、数据集的重新加载、以及相关的 API 操作,适用于基于对话系统的应用。原创 2025-04-14 20:57:50 · 422 阅读 · 1 评论 -
(9-4-2)智能客服Agent开发:Agent(02)DeepSeek对话Agent
上面的代码实现了一个 DeepSeekAssistantAgent 类,该类通过与 DeepSeek API 交互来实现自动化对话生成和多媒体处理。其主要功能包括创建和删除对话线程、生成回答以及处理不同类型的多媒体数据(图片、音频、视频等)。文件deepseek_assistant_agent.py是一个适用于 DeepSeek AI 的智能助手代理(Agent),其主要功能是与 DeepSeek API 交互,实现自然语言处理(NLP)对话、音视频转录以及多媒体信息解析等能力。原创 2025-04-14 20:55:04 · 759 阅读 · 0 评论 -
(9-4-1)智能客服Agent开发:Agent(01)Agent工厂+OpenAI对话Agent
本项目的“Agents”目录包含了与智能代理(Agent)相关的功能和实现,主要负责管理和实现智能代理相关的功能,包括定义代理的基础接口(BaseAgent)、提供代理工厂(agent_factory.py)以根据配置创建不同类型的代理,以及实现具体的代理逻辑,如 OpenAIAgent 和 OpenAIAssistantAgent。(5)下面代码的功能是处理各种类型的媒体文件(图片、音频、视频、文件),并将其转换为可发送给 OpenAI Assistant 的结构化消息。原创 2025-04-13 17:33:04 · 1198 阅读 · 0 评论 -
(9-3)智能客服Agent开发:实体模型
本项目的“entities”目录主要包含了与系统中的对话、消息和代理实例相关的数据库模型,分别定义了对话 (Dialog) 和消息 (Message) 的结构及其与其他实体(如代理实例 AgentInstance)的关系。上述代码定义了四个数据模型,主要用于 API 请求时的数据验证和处理。文件api.py定义了多个请求的数据模型类,主要用于在 API 请求中传输用户的输入和消息数据。文件models.py定义了几个与对话和消息相关的数据库模型,主要用于表示和处理对话、消息以及代理实例的信息。原创 2025-04-13 17:29:44 · 521 阅读 · 0 评论 -
(9-2)智能客服Agent开发:大模型交互
具体而言,“llm”目录下的模块实现了对不同 LLM 服务的封装,包括 OpenAI 和 DeepSeek。文件base_llm.py实现了类BaseLLM,此类提供了一个通用的接口,子类可以根据不同的实现需求,如不同的语言模型(例如 OpenAI GPT),来扩展这些方法。文件openai_llm.py定义了一个名为 OpenAILLM 的类,继承自 BaseLLM,用于与 OpenAI 的 API 进行交互,提供文本生成、文本嵌入和语音转文本等功能。原创 2025-04-11 15:48:56 · 708 阅读 · 1 评论 -
(9-1)智能客服Agent开发:背景介绍
在数字化转型和信息化浪潮的推动下,客户服务正从传统模式向智能化、自动化迅速转型。随着人工智能、机器学习和自然语言处理技术的飞速发展,企业越来越重视通过智能客服系统提高服务效率、降低成本并提升用户体验。传统客服系统往往存在响应慢、处理效率低、难以实现全天候服务等问题,而先进的智能客服代理系统能够实现实时对话、多渠道交互和跨平台服务,满足客户多样化、即时性需求。此外,市场竞争的加剧和客户期望的不断提高促使企业不断寻求创新技术,以提供更精准、个性化的服务,这为智能客服代理系统的应用和推广提供了广阔的市场空间。原创 2025-04-11 15:46:18 · 389 阅读 · 1 评论 -
(8-3)通用AI Agent开发全流程:部署与维护
例如下面的实例实现了一个具有自我监控和异常恢复能力的AI Agent系统,通过定期采集系统、应用和安全指标,结合Isolation Forest异常检测和自愈规则(如降低负载、释放内存、重启服务)来确保AI Agent的稳定运行。(2)启动监控线程:后台线程定期采集系统(CPU、内存、磁盘)、应用(任务队列、工作线程数、成功率)、安全(异常事件)等指标,并存入加密队列。(3)任务处理:AI Agent 通过工作线程池从任务队列中取出任务并执行,模拟正常工作负载,同时引入一定概率的任务处理错误。原创 2025-04-10 17:38:05 · 1483 阅读 · 2 评论 -
(8-2)通用AI Agent开发全流程:原型开发与迭代
此外,随着技术的发展,Low-Code平台也在不断与其他新兴技术(如AI、机器学习等)整合,为开发更智能、更复杂的AI Agent提供了更多可能性。(4)结果统计与可视化:测试结束后,程序通过 BenchmarkTool 汇总所有采集到的数据,计算出每个模块的平均执行时间、内存峰值、CPU 使用率和执行时间分布。(1)定义测试目标和指标:在开始基准测试之前,需明确测试的目的和重点,例如评估Agent的响应速度、任务完成率、资源消耗等。确保测试过程的自动化和数据收集的准确性,以提高测试效率和可靠性。原创 2025-04-10 10:04:24 · 1059 阅读 · 2 评论 -
(8-1-02)通用AI Agent开发全流程:需求分析与场景建模(2)环境状态空间建模
例如下面的实例实现了一个简单的AI Agent,演示了环境状态空间建模的过程。(3)离散化或连续表示:根据任务特点,决定状态空间是离散的还是连续的。而在更复杂的场景如自动驾驶中,状态空间可能是连续的,需要使用函数逼近(如神经网络)来处理。(5)环境动态建模:在基于模型的强化学习中,构建环境动态模型以预测执行动作后的未来状态。(7)多模态状态融合:在复杂场景中,可能需要融合多种类型的状态信息(如视觉、听觉等),构建综合的状态表示。(2)定义状态空间范围:确定每个状态变量的取值范围,构建状态空间的边界。原创 2025-04-09 17:08:03 · 1082 阅读 · 1 评论 -
(8-1)通用AI Agent开发全流程:需求分析与场景建模(1)三层设计+目标函数与奖励机制设计
通用AI Agent开发全流程包括需求分析与场景建模、原型开发与迭代、部署与维护三个阶段。在需求分析与场景建模阶段,要明确目标、设计奖励机制、建模环境状态;原型开发与迭代阶段需基于低代码平台快速开发原型并进行性能测试;部署与维护阶段则要制定云边端协同部署策略并建立持续监控与异常恢复机制,以确保Agent稳定高效运行并能不断优化升级。原创 2025-04-09 10:57:36 · 714 阅读 · 0 评论 -
(7-3-02)多Agent协作与竞争:复杂环境中的群体智能(2)基于Swarm Intelligence的协同优化
总之,基于Swarm Intelligence的协同优化方法提供了一种有效的方式,使得多AI Agent系统能够在不确定性和动态变化的环境中展现出卓越的性能。总之,基于Swarm Intelligence的协同优化方法提供了一种有效的方式,使得多AI Agent系统能够在不确定性和动态变化的环境中展现出卓越的性能。Swarm Intelligence(群体智能)是一种受自然界中群体生物行为(如蚁群、鸟群等)启发的计算方法,它在多AI Agent系统中能够实现高效的协同优化。图7-1 智能体的动画。原创 2025-04-08 21:28:48 · 920 阅读 · 4 评论 -
(7-3-01)多Agent协作与竞争:复杂环境中的群体智能(1)群体路径规划与资源分配
复杂环境中的群体智能是指在动态、不确定且通常具有高度复杂性的环境中,由多个简单个体组成的群体通过局部交互和自我组织展现出的集体智能行为。这种智能形式能够使群体在复杂任务中实现高效的资源分配、适应性决策和问题求解,例如在机器人协作、智能交通系统和分布式优化等领域中,通过模拟生物群体的行为模式,群体智能能够有效应对环境的动态变化和复杂挑战。多AI Agent中的群体路径规划与资源分配是复杂系统的两大核心挑战,需要结合智能体协作、环境建模和优化策略来实现高效、安全的协同。图7-1 智能体的动画。原创 2025-04-08 21:27:23 · 837 阅读 · 1 评论 -
(7-2-02)多Agent协作与竞争:竞争场景下的博弈策略(2)深度强化学习在竞争中的应用
多智能体深度强化学习是强化学习和深度学习的交叉领域,涉及多个智能体在环境中同时学习和交互。与单智能体强化学习不同,多智能体系统中的智能体可能有不同的目标,且它们的行为会相互影响,导致环境变得非常复杂和动态。原创 2025-04-07 20:33:17 · 669 阅读 · 2 评论 -
(7-2-01)多Agent协作与竞争:竞争场景下的博弈策略(1)纳什均衡与博弈论模型
一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。在多Agent系统的竞争场景中,博弈策略是Agent为了实现自身利益最大化而采取的行动方案,这些策略通常基于对其他Agent行为的预测和响应。总之,在多Agent系统中,纳什均衡和博弈论模型的应用非常广泛,例如在资源分配、任务调度、网络路由等领域,Agent可以通过博弈论模型找到最优的策略组合,从而实现系统的整体优化。在多Agent强化学习(MARL)中,寻找纳什均衡的步骤如下。原创 2025-04-06 16:42:25 · 1058 阅读 · 1 评论 -
(7-1)多Agent协作与竞争:多Agent系统设计
通用AI Agent的架构设计以分层架构为核心,涵盖感知、决策与执行三大模块,强调模块化、松耦合、容错与实时性。通过优化数据流,实现高效的信息传递与处理。典型架构模式包括BDI架构、端到端学习架构、混合架构以及多智能体协同架构,各具优势,适用于不同场景。架构选型需综合考虑任务需求、环境特性与性能要求,以实现灵活、高效且可靠的系统设计。原创 2025-04-06 16:40:19 · 831 阅读 · 0 评论 -
(6-3-02)学习与自适应机制:自我改进机制(2)元学习(Meta-Learning)框架
元学习(Meta-Learning),也称为“学习如何学习”,是一种机器学习方法,其目标是让模型能够通过学习任务的经验,更好地适应新任务。元学习的主要思想是将学习任务视为一个嵌套的过程,其中模型在外层学习如何适应不同的任务(元学习),在内层学习特定任务的具体知识。元学习(Meta-Learning)又称“学会学习”(Learn to Learn),其目标是让模型通过多个相关任务的训练,学会如何快速适应新任务或在小样本条件下(如1-shot、6-shot)完成学习。元学习包括两个关键阶段:元训练和元测试。原创 2025-04-05 21:25:32 · 895 阅读 · 0 评论 -
(6-3-01)学习与自适应机制:自我改进机制(1)自动超参数优化(AutoML)
结合前沿工具(如Optuna、Ray Tune)和算法(如贝叶斯优化、强化学习),AI Agent能够快速响应动态环境,实现从数据到部署的全流程自动化。(1)环境与配置初始化:定义环境参数(如CartPole-v1)和超参数搜索空间(如学习率、探索率衰减、网络层数等),通过AutoMLConfig类集中管理。(2)神经架构搜索(NAS):目标是自动设计深度神经网络的结构(如层数、连接方式、激活函数等)。(1)超参数优化(HPO):目标是在超参数搜索空间中找到最优组合,提升模型性能。原创 2025-04-05 21:23:08 · 1135 阅读 · 0 评论