2024年软件测试最新Web 功能测试下的 Redis缓存数据库_redis缓存数据怎么测试,【秋招面试专题解析】

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

可以持久化特定数据。

利用zset类型可以存储排行榜

利用list的自然时间排序存储最新n个数据

七、Linux下redis:

redis目录:usr/local/bin

linux下redis常用命令:

redis-benchmark:性能测试工具

redis-server:启动redis服务器

redis-cli:启动redis客户端,操作入口

八、Redis基础知识

端口:6379

默认16个数据库,下标从0开始

单线程:redis是单线程+io多路复用:检查文件描述的就绪状态

Memchached:多线程+锁

redis数据类型:String set list hash zset

2、redis 实际应用中的缓存作用

有人说互联网用户是用脚投票的,这句话其实也从侧面说明了,用户体验是多么的重要;这就要求在软件架构设计时,不但要注重可靠性、安全性、可扩展性以及可维护性等等的一些指标,更要注重用户的体验,用户体验分很多方面,但是有一点非常重要就是对用户操作的响应一定要快;怎样提高用户访问的响应速度,这就是摆在架构设计中必须要解决的问题;说道提高服务的响应速度就不得不说缓存了;

从系统的层面说,CPU的速度远远高于磁盘IO的速度;所以要想提高响应速度,必须减少磁盘IO的操作,但是有很多信息又是存在数据库当中的,每次查询数据库就是一次IO操作;比如查询用户信息的例子。

通常如下图:

请求响应时间等于网络响应时间和服务器响应时间;网络我们控制不了,服务器响应时间包括CPU计算时间和磁盘IO时间。

其中CPU计算时间这个有硬件资源决定的,我们尽量减少算法的复杂度来减少它,磁盘IO时间,这个时间是非常慢的,应该尽量减少;

当客户端调用getUser接口的查询用户信息的时候,执行顺序1、2、3、4;由于用户信息存放在DB中,所以2、3就有一次磁盘IO;这个看似非常简单业务逻辑,但是当你做架构设计的时候往往要考虑最坏的场景,或者当成千上万的用户频繁的调用这个接口应该怎么处理?

如果按照上图这样的架构处理,这个看似简单业务的接口会使整个系统变慢,这样用户的请求就会长时间得不到响应;这样的问题怎么解决那,这时候就该缓存登场了;

谈到缓存有几种形式,其中最简单的是在每个进程中开辟一块内存,存放缓存的信息,每次先从内存查… …  但是在一个分布式或者集群的环境中,getUser的接口可能会部署多套,每个进程的的内存是不能共享、相互独立的,这就悲剧了;

还有一种使用一个第三方的缓存也叫公共缓存(比如redis、memcache等);不论部署多少个包含getUser接口的服务,都去访问同一套缓存,那结果就不一样了。

看一下下面这幅图:

有Redis,当用客户端调用getUser接口查询用户信息的时候,getUser接口直接去redis中查询,如果redis中有该用户信息,直接返回,避免查询DB,从而避免了磁盘IO操作;

如果redis中没有该用户信息,则从DB查询,并且把该用户信息存放到redis中;这样在服务接口(getUser)和DB中间,增加了一个缓存层;看似逻辑增加了,其实当面对高并发的时候,比如上边提到的频繁查询用户信息的情况,只有第一次查询有磁盘IO操作,以后只要redis中存在就没必要再查询数据库了;由于没有了磁盘IO操作,并且redis所有数据都在内存操作,所以速度回大大提升;

我们上面用到的缓存是redis,其实常用的还有memcache等,它们都提供了集群模式,并且都是直接内存操作,所以速度特别快,也是目前业内使用的比较热门的技术;

redis相对于memcache提供了更丰富的数据类型,根据不同的业务场景可以选在不同的数据类型;redis本身也提供了主从模式、集群模式;也有第三方的比如codis提供了redis集群解决方案;这次咱们主要聊缓存在架构设计中的作用,等有机会详细介绍redis的使用;

总之一句话,要想提高系统的性能,尽量减少IO的操作,特别是磁盘IO的操作;使用缓存可以有效的避免这种情况;所以在架构设计过程中,社交到查询数据库的时候,应该考虑一下是不是考虑使用缓存技术来提高系统的性能,并且降低数据库的负载。

3、Redis的7个应用场景

一、缓存——热数据

热点数据(经常会被查询,但是不经常被修改或者删除的数据),首选是使用redis缓存,毕竟强大到冒泡的QPS和极强的稳定性不是所有类似工具都有的,而且相比于memcached还提供了丰富的数据类型可以使用,另外,内存中的数据也提供了AOF和RDB等持久化机制可以选择,要冷、热的还是忽冷忽热的都可选。

结合具体应用需要注意一下:很多人用spring的AOP来构建redis缓存的自动生产和清除,过程可能如下:

Select 数据库前查询redis,有的话使用redis数据,放弃select 数据库,没有的话,select 数据库,然后将数据插入redis

update或者delete数据库钱,查询redis是否存在该数据,存在的话先删除redis中数据,然后再update或者delete数据库中的数据。

上面这种操作,如果并发量很小的情况下基本没问题,但是高并发的情况请注意下面场景:

为了update先删掉了redis中的该数据,这时候另一个线程执行查询,发现redis中没有,瞬间执行了查询SQL,并且插入到redis中一条数据,回到刚才那个update语句,这个悲催的线程压根不知道刚才那个该死的select线程犯了一个弥天大错!于是这个redis中的错误数据就永远的存在了下去,直到下一个update或者delete。

二、计数器

诸如统计点击数等应用。由于单线程,可以避免并发问题,保证不会出错,而且100%毫秒级性能!爽。

命令:INCRBY

当然爽完了,别忘记持久化,毕竟是redis只是存了内存!

三、队列

相当于消息系统,ActiveMQ,RocketMQ等工具类似,但是个人觉得简单用一下还行,如果对于数据一致性要求高的话还是用RocketMQ等专业系统。

由于redis把数据添加到队列是返回添加元素在队列的第几位,所以可以做判断用户是第几个访问这种业务

队列不仅可以把并发请求变成串行,并且还可以做队列或者栈使用

四、位操作(大数据处理)

用于数据量上亿的场景下,例如几亿用户系统的签到,去重登录次数统计,某用户是否在线状态等等。

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值