算数平均数、调和平均数、几何平均数的计算方法与应用场合

 定义

1、算数平均数:又称均值,是统计学中最基本,最常用的一种平均指标,分为简单算术平均数、加权算术平均数。

2、调和平均数:又称倒数平均数,是总体各统计变量倒数的算数平均数的倒数。分为数学调和平均数(数值倒数的平均数的倒数)和统计调和平均数(计算结果与加权算术平均数完全相等)。

3、几何平均数:几何平均数是对各变量值的连乘积开项数次方根。根据所拿掌握资料的形式不同,其分为简单几何平均数和加权几何平均数两种形式。

 计算方法
1、算数平均数:

设一组数据为X1,X2,...,Xn,简单地算术平均数的计算公式为:

  M=\frac{x_{1}+x_{2}+x_{3}+\cdots + x_{n}}{n}

加权算术平均:主要用于处理经分组整理数据。

设原始数据被分成K组,各组的组中值为X1,X2,...Xk,各组的频数分别为f1,f2,...fk,加权算术平均数的计算公式为:

M=\frac{x_{1} \times f_{1} +x_{2} \times f_{2} +x_{3} \times f_{3} +\cdots + x_{n} \times f_{k} }{ f_{1} + f_{2} + f_{3} +\cdots + f_{k} }

2、调和平均数:

简单调和平均数是算术平均数的变形。

H_{n}= \frac{1}{ \frac{1}{n}{} \sum_{i=1}^{n} \frac{1}{ x_{i}}} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}} }

加权调和平均数:

H_{n}= \frac{1}{ \frac{1}{m_{1}+m_{2}+...+m_{n}}( \frac{1}{x_{1}} + \frac{2}{x_{2}}+ ... + \frac{n}{x_{n}}))} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}}

例如:某工厂购进材料三批,每批价格及采购金额资料如下表:

价格(元/千克)(x)采购金额(元)(m)采购数量(千克)(m/x)
第一批3510000286
第二批4020000500
第三批4515000330
合计-450001116

H_{n} = \frac{\sum_{i=1}^{n} m_{i} }{\sum_{i=1}^{n} \frac{m_i}{x_{i}}} = \frac{45000}{1116} = 40.32

3、几何平均数:

简单几何平均数:

G = \sqrt[n]{x_{1} \times x_{2} \times \cdots \times x_{n}}

加权几何平均数:

G_{n} = \sum_{i=1}^{n} f_{i} \sqrt{ \prod_{i=1}^{n} x_{i}^{f_{i}} }

 应用场合

1、算数平均数:适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。

简单算术平均数适用于未分组的原始数据。加权平均数用于分组的数据。

2、调和平均数:可以用于计算平均速度,例:计算4x100米接力赛中,运动员的总体速度。

3、几何平均数:

1、对比率、指数等进行平均;

2、计算平均发展速度;

3、复利下的平均年利率;

4、连续作业的车间产品的平均合格率;

计算总水平、总成果等所有阶段、所有环节水平、成果的连乘积总和时,求各阶段、各环节的一般水平、一般成果,要使用几何平均法计算几何平均数。

 特点
算术平均值是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小抽样变化的影响等特点。但是极易受极端数据的影响,每个数据的或大或小的变化都会影响最终结果。

调和平均数具有以下几个主要特点:

1、调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。

2、只要有一个标志值为0,就不能计算调和平均数。

3、当组距数列有开口组时,其组中值即使按照相邻组距计算,假定性也很大。

4、调和平均数应用的范围较小。

三者的关系:

调和平均数 ≤ 几何平均数 ≤ 算术平均数 ≤ 平方平均数

几何平均数

geo·met·ric

[ˌdʒɪəˈmɛtrɪk]

ADJECTIVE

  1. relating to geometry, or according to its methods.

  2. characterized by or decorated with regular lines and shapes:

    "a geometric pattern"

原文链接:Geometric Mean

The Geometric Mean is a special type of average where we multiply the numbers together and then take a square root (for two numbers), cube root (for three numbers) etc.

Example: What is the Geometric Mean of 2 and 18?
First we multiply them: 2 × 18 = 36
Then (as there are two numbers) take the square root: √36 = 6
In one line:

Geometric Mean of 2 and 18 = 2√(2 x 18)  = 6

It is like the area is the same!

mathsisfun.com/numbers/images/geometric-mean-2.svg

Example: What is the Geometric Mean of 10, 51.2 and 8?

First we multiply them: 10 × 51.2 × 8 = 4096
Then (as there are three numbers) take the cube root: 3√4096 = 16
In one line:

Geometric Mean = 3√(10 × 51.2 × 8) = 16

It is like the volume is the same:

mathsisfun.com/numbers/images/geometric-mean-3.svg

Example: What is the Geometric Mean of 1, 3, 9, 27 and 81?
First we multiply them: 1 × 3 × 9 × 27 × 81 = 59049
Then (as there are 5 numbers) take the 5th root: 5√59049 = 9
In one line:

Geometric Mean = 5√(1 × 3 × 9 × 27 × 81) = 9

I can’t show you a nice picture of this, but it is still true that:

1 × 3 × 9 × 27 × 81  =  9 × 9 × 9 × 9 × 9

Example: What is the Geometric Mean of a Molecule(分子) and a Mountain

Using scientific notation:

A molecule of water (for example) is 0.275 × 10-9 m
Mount Everest (for example) is 8.8 × 103 m

Geometric Mean	= √(0.275 × 10-9 × 8.8 × 103)
    = √(2.42 × 10-6)
    ≈ 0.0016 m

Which is 1.6 millimeters, or about the thickness of a coin.

We could say, in a rough kind of way,

“a millimeter is half-way between a molecule and a mountain!”

So the geometric mean gives us a way of finding a value in between widely different values.

Definition

For n numbers: multiply them all together and then take the nth root (written n√ )
More formally, the geometric mean of n numbers a1 to an is:

n√(a1 × a2 × ... × an)

Useful

The Geometric Mean is useful when we want to compare things with very different properties.

top view camera
Example: you want to buy a new camera.
One camera has a zoom of 200 and gets an 8 in reviews,
The other has a zoom of 250 and gets a 6 in reviews.
Comparing using the usual arithmetic mean gives (200+8)/2 = 104 vs (250+6)/2 = 128. The zoom is such a big number that the user rating gets lost.

But the geometric means of the two cameras are:

√(200 × 8) = 40
√(250 × 6) = 38.7...

So, even though the zoom is 50 bigger, the lower user rating of 6 is still important.

几何平均数的几何意义及与算术平均数的关系的几何解释

原文链接:百度安全验证

我们看两个数的情况。设有两个数a、b,其算术平均数为(a +b)/2,几何平均数为√ab,两者关系为(a+ b)/2≥√ab。下面我们从几何上来理解几何平均数的含义及算术平均数与几何平均数的关系。

如图1,⊿ABD为圆内三角形,AB为直径(故⊿ABD必为直角三角形),DD’垂直于AB,并将AB分成长为a、 b的 两段(注意DD’不一定为直径),现在若已知a,、b 两段的长度,问CD长度为几何?与a 、b有何关系?因为⊿ABD、⊿ACD、⊿CBD均为直角三角形,故此有以下关系:

CD^2+ a^2 = AD^2;
CD^2 + b^2 = BD^2;
AD^2 + BD^2 = AB^2 =(a+b)^2

于是有:CD^2+ a^2 + CD^2 + b^2= a^2+b^2+2ab等式两边化简,得:CD^2= ab即:CD= √ab。另外,由上图可见,(a +b)/2 ≥ √ab(仅当DD’为直径时相等)。问题得以证明。

算术平均数 vs 几何平均数

原文链接:算术平均数 vs 几何平均数 - 知乎

首先明确一点,几何平均数和算数平均数其实都是一种衡量平均水平的统计方法,之所以计算方法有差别,是因为数据类型的不同导致。

无论任何平均数,其意义都是:对于数列用某一个常数A将数列中的每一项替换,形成的新数列结果上与旧数列等效。这个常数A,就是数列An的平均数。

那么什么时候用算数平均数什么时候用几何平均数呢,我们来考虑以下的情形:你发现最近二师兄(猪肉)身价猛涨,于是投入了10万元本金开始卖猪肉,果然第一年赚得盆满钵满的,赚了5万元,本金变成了10+5=15万元。但是好景不长,商品的供需周期的变化,第二年的时候很多猪肉供应商开始进入猪肉市场,供应的大量增加导致猪肉价格快速下跌,第二年亏了7.5万元,本金变成了15-7.5=7.5万元。

现在我们想计算下述两个平均数:

1. 两年利润的平均数

这种类型的平均数最终结果是一个和,第一年利润是5万元,第二年利润是-7.5万元,最终结果是亏了2.5万元,年均亏1.25万元。
两年赚的钱构成的数列{A1,A2}
根据平均数的定义,为构造一个数列与其等效{A,A}
那么这个等效数列

A= \frac{A_{1}+ A_{2}}{2} = \frac{ 5 + ( - 7.5 )}{ 2 } = - 1.25


万元
也就是第一年赚5万元并且第二年亏7.5万元和两年都亏1.25万元等效。

2. 两年本金变化的平均数

这种类型的平均数最终结果是一个积,第一年初本金是10万元,第一年末变成15万元增长到了1.5倍,第二年末变成7.5万元下降到了0.5倍。
两年本金增长倍数{A1,A2}
根据平均数的定义,为构造一个数列与其等效{A,A}
那么这个等效数列

A = \sqrt{ A_{1} \times A_{2}} = \sqrt{1.5 \times 0.5 } = 0.87


也就是第一年本金增长到1.5倍并且第二年下降到0.5倍和两年都下降到0.87倍等效。

总结来说,当数据最终结果是一个和时,用算术平均数更合适,当数据最终结果是一个积时,用几何平均数更加合适。所以一般在算增长率的时候,用几何平均数更加合适。

算术平均数

A = \frac{A_1+ A_2 + \dots + A_n}{n}


几何平均数

A = \sqrt[n]{A_{1} \times A_2 \times \dots \times A_n}

注意几何平均数里如果是增长率的话用的公式是

A = \sqrt[n]{ (1+A_1) \times (1+ A_2) \times \dots \times (1+ A_n))} - 1

例如上述例题中增长率

A = \sqrt{(1+0.5) \times (1-0.5)} -1 \approx -0.13397


如果平均数用得不合适,容易导致荒谬的结论。

举个例子,假如一只股票价格第一年初价格为10元,第一年增长了100%变成了20元,第二年下降了50%变成了10元,在算平均增长率时

几何平均数

A = \sqrt{(1+ 1) \times (1 -0.5)} -1 = 0

算数平均数

A = \frac{1 + (- 0.5)}{2} = 0.25

几何平均数才是更加合理的答案,因为这个股票第一年初价格为10元,第二年末价格也是10元,增长率为0%,算术平均数算出来的75%就显得很荒谬。

后记:
  1. 平均数还有一种叫做调和平均数,计算公式为:A=\frac{n}{\frac{1}{A_1} + \frac{1}{A_2} + \dots + \frac{1}{A_n} }

  2. 适用的例子是我们初中物理中学到的并联电路中各个并联电阻构成的电路总电阻的计算。各电阻为A1,A2,…,An并联和A,A,…,A并联构成的电路总电阻等效。

  3. 根据不等式的性质可以证明:调和平均数 ≤ 几何平均数 ≤ 算术平均数

摘自:

算数平均数、调和平均数、几何平均数的计算方法与应用场合 - 知乎 (zhihu.com)

几何平均数 | Notes (zhayes.github.io)

  • 25
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值