计算机视觉
文章平均质量分 88
abka
abka 阿布卡赫赫
展开
-
详解Transformer (Attention Is All You Need)
注意力(Attention)机制[2]由Bengio团队与2014年提出并在近年广泛的应用在深度学习中的各个领域,例如在计算机视觉方向用于捕捉图像上的感受野,或者NLP中用于定位关键token或者特征。谷歌团队近期提出的用于生成词向量的BERT[3]算法在NLP的11项任务中取得了效果的大幅提升,堪称2018年深度学习领域最振奋人心的消息。而BERT算法的最重要的部分便是本文中提出的Transformer的概念。转载 2022-10-27 23:54:59 · 855 阅读 · 0 评论 -
新目标检测框架 | 基于改进的one-shot的目标检测
特别是使用一个度量学习模块,而不是经典的分类器,来计算来自新感兴趣的类的support image和query image的标记窗口之间的相似性。另一种方法如下图(b),LSTD框架选择利用来自新感兴趣的类的support样本来优化区域候选网络(RPN,即取代传统的滑动窗口方案)和基于深度学习的检测器,并期望原始检测流能够以有限的支持样本数量自适应地识别新类。相比之下,所提出的OSCD实现了C-RPN和C-Detector的条件目标检测,以更加关注支持类的对象,并过滤掉其他类的无关对象。转载 2022-09-16 10:18:59 · 468 阅读 · 0 评论 -
NVR(网络硬盘录像机)以及其他相近名词DVR、DVS、NVS
近几年,随着IP网络的快速发展,视频监控行业也进入了全网络化时代。全网络化时代的视频监控行业正逐步表现出IT行业的特征,作为网络化监控的核心产品NVR(Network Video Recorder即网络视频录像机),从本质上已经变成了IT产品。NVR最主要的功能是通过网络接收IPC(网络摄像机)、DVS(视频编码器)等设备传输的数字视频码流, 并进行存储、管理。...原创 2022-08-10 16:18:03 · 7592 阅读 · 0 评论 -
AI 摄像头算力
算力:在AI摄像头里面经常有1T,0.5T等等比特币中的算力:算力(也称哈希率)是比特币网络处理能力的度量单位。即为计算机()计算输出的速度。比特币网络必须为了安全目的而进行密集的数学和加密相关操作。例如,当网络达到10Th/s的哈希率时,意味着它可以每秒进行10万亿次计算。1 kH / s =每秒1,000哈希1 MH / s =每秒1,000,000次哈希。1 GH / s =每秒1,000,000,000次哈希。1 TH / s =每秒1,000,000,000,000次哈希。...原创 2022-08-10 15:01:59 · 3004 阅读 · 0 评论 -
Triton Inference Server (Triton 推理服务器)入门开始简单demo示例开始 001
前置条件安装Nvidia显卡的机器,安装最新的显卡驱动Official Drivers | NVIDIA可以根据自己的操作系统和显卡型号选择对应的cuda驱动下载Frameworks Support Matrix :: NVIDIA Deep Learning Frameworks Documentation安装:docker安装:NVIDIA Container ToolkitGitHub - NVIDIA/nvidia-docker: Build and run Docker containers le原创 2022-06-15 10:48:18 · 1244 阅读 · 0 评论 -
计算机视觉 – Computer Vision | CV
计算机视觉(Computer Vision)是人工智能领域的一个重要分支。它的目的是:看懂图片里的内容。本文将介绍计算机视觉的基本概念、实现原理、8 个任务和 4 个生活中常见的应用场景。计算机视觉为什么重要?人的大脑皮层, 有差不多 70% 都是在处理视觉信息。 是人类获取信息最主要的渠道,没有之一。在网络世界,照片和视频(图像的集合)也正在发生爆炸式的增长!下图是网络上新增数据的占比趋势图。灰色是结构化数据,蓝色是非结构化数据(大部分都是图像和视频)。可以很明显的发现,图片和视频.原创 2022-01-28 17:56:37 · 3880 阅读 · 0 评论 -
HyperLPR 高性能开源中文车牌识别框架
概要HyperLRP是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。本文将根据官网指引,进行一个车牌识别的入门探索。HyperLPR的检测流程使用opencv的HAAR Cascade检测车牌大致位置 Extend检测到的大致位置的矩形区域 使用类似于MSER的方式的多级二值化和RANSAC拟合车牌的上下边界 使用CNN Regression.原创 2022-01-28 17:09:33 · 8670 阅读 · 0 评论