使用Vala破解极验第三代滑块验证码


极验验证码是一种常见的图形验证方式,通过拖动滑块到指定位置来完成验证。本文将演示如何使用Vala语言结合图像处理技术,破解极验第三代滑块验证码。Vala是一种高效的编程语言,具有类似C#的语法和GObject的绑定,使得它非常适合图形处理和自动化任务。

一、前置准备
1. 安装依赖库
我们需要使用libsoup进行网络请求,使用gdk-pixbuf处理图像。在安装这些库之前,请确保你的系统已经安装了Vala编译器。

bash

sudo apt-get install valac libgtk-3-dev libsoup2.4-dev libgdk-pixbuf2.0-dev
二、实现步骤
1. 获取验证码图片
首先,我们使用libsoup库下载验证码的背景图片和完整背景图片。更多内容联系1436423940

vala

using Soup;
using GLib;
using GdkPixbuf;

class Downloader {
    public static void download_image(string url, string path) {
        var session = new Soup.Session();
        var message = new Soup.Message("GET", url);

        session.send_message(message);
        if (message.status_code == 200) {
            FileUtils.set_contents(path, message.response_body.flatten().data.to_string());
        }
    }
}

int main(string[] args) {
    string bg_url = "https://static.geetest.com/pictures/gt/3999642ae/3999642ae.webp";
    string full_bg_url = "https://static.geetest.com/pictures/gt/3999642ae/bg/fbdb18152.webp";

    Downloader.download_image(bg_url, "bg_image.webp");
    Downloader.download_image(full_bg_url, "full_bg_image.webp");

    return 0;
}
2. 图像处理
接下来,我们将使用gdk-pixbuf加载图像,并通过像素比较找到缺口位置。

vala

class ImageProcessor {
    public static int find_gap(Pixbuf bg_image, Pixbuf full_bg_image) {
        for (int x = 0; x < bg_image.get_width(); x++) {
            for (int y = 0; y < bg_image.get_height(); y++) {
                var bg_pixel = bg_image.get_pixels()[x * 3 + y * bg_image.get_rowstride()];
                var full_bg_pixel = full_bg_image.get_pixels()[x * 3 + y * full_bg_image.get_rowstride()];
                if (bg_pixel != full_bg_pixel) {
                    return x;
                }
            }
        }
        return -1;
    }
}

int main(string[] args) {
    var bg_image = new Pixbuf.from_file("bg_image.webp");
    var full_bg_image = new Pixbuf.from_file("full_bg_image.webp");

    int gap_position = ImageProcessor.find_gap(bg_image, full_bg_image);
    print("Gap position: %d\n", gap_position);

    return 0;
}
3. 模拟拖动滑块
在这里,我们将模拟人类拖动滑块的行为。由于Vala没有直接的Selenium支持,我们将利用Python来控制浏览器进行拖动。

首先,用Python生成拖动轨迹:

python

# generate_tracks.py
import numpy as np

def bezier_curve(t):
    return 3 * t * (1 - t)**2 + 3 * (1 - t) * t**2 + t**3

def generate_tracks(distance):
    tracks = []
    for i in range(101):
        t = i / 100
        x = int(bezier_curve(t) * distance)
        tracks.append(x)
    return tracks

if __name__ == "__main__":
    import sys
    distance = int(sys.argv[1])
    tracks = generate_tracks(distance)
    print(tracks)
然后,用Python和Selenium模拟拖动滑块:

python

# simulate_drag.py
from selenium import webdriver
import time
import subprocess
import json

gap_position = 100  # 从 Vala 程序获取

result = subprocess.run(['python3', 'generate_tracks.py', str(gap_position)], stdout=subprocess.PIPE)
tracks = json.loads(result.stdout.decode('utf-8'))

browser = webdriver.Chrome()
browser.get('https://account.ch.com/NonRegistrations-Regist')

knob = browser.find_element_by_class_name('gt_slider_knob')
actions = webdriver.ActionChains(browser)

actions.click_and_hold(knob).perform()
for track in tracks:
    actions.move_by_offset(track, 0).perform()
    time.sleep(0.02)
actions.release().perform()

browser.quit()
4. 调用Python脚本
最后,在Vala程序中调用Python脚本生成轨迹并模拟滑块拖动。

vala

public static int main(string[] args) {
    int gap_position = 100; // 从图像处理步骤获取

    try {
        Process.spawn_command_line_sync("python3 generate_tracks.py " + gap_position.to_string(), out string stdout, out string stderr, out int exit_status);
        print("Tracks generated: %s\n", stdout);

        Process.spawn_command_line_sync("python3 simulate_drag.py", out stdout, out stderr, out exit_status);
    } catch (SpawnError e) {
        print("Error: %s\n", e.message);
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值