极验验证码是一种常见的图形验证方式,通过拖动滑块到指定位置来完成验证。本文将演示如何使用Vala语言结合图像处理技术,破解极验第三代滑块验证码。Vala是一种高效的编程语言,具有类似C#的语法和GObject的绑定,使得它非常适合图形处理和自动化任务。
一、前置准备
1. 安装依赖库
我们需要使用libsoup进行网络请求,使用gdk-pixbuf处理图像。在安装这些库之前,请确保你的系统已经安装了Vala编译器。
bash
sudo apt-get install valac libgtk-3-dev libsoup2.4-dev libgdk-pixbuf2.0-dev
二、实现步骤
1. 获取验证码图片
首先,我们使用libsoup库下载验证码的背景图片和完整背景图片。更多内容联系1436423940
vala
using Soup;
using GLib;
using GdkPixbuf;
class Downloader {
public static void download_image(string url, string path) {
var session = new Soup.Session();
var message = new Soup.Message("GET", url);
session.send_message(message);
if (message.status_code == 200) {
FileUtils.set_contents(path, message.response_body.flatten().data.to_string());
}
}
}
int main(string[] args) {
string bg_url = "https://static.geetest.com/pictures/gt/3999642ae/3999642ae.webp";
string full_bg_url = "https://static.geetest.com/pictures/gt/3999642ae/bg/fbdb18152.webp";
Downloader.download_image(bg_url, "bg_image.webp");
Downloader.download_image(full_bg_url, "full_bg_image.webp");
return 0;
}
2. 图像处理
接下来,我们将使用gdk-pixbuf加载图像,并通过像素比较找到缺口位置。
vala
class ImageProcessor {
public static int find_gap(Pixbuf bg_image, Pixbuf full_bg_image) {
for (int x = 0; x < bg_image.get_width(); x++) {
for (int y = 0; y < bg_image.get_height(); y++) {
var bg_pixel = bg_image.get_pixels()[x * 3 + y * bg_image.get_rowstride()];
var full_bg_pixel = full_bg_image.get_pixels()[x * 3 + y * full_bg_image.get_rowstride()];
if (bg_pixel != full_bg_pixel) {
return x;
}
}
}
return -1;
}
}
int main(string[] args) {
var bg_image = new Pixbuf.from_file("bg_image.webp");
var full_bg_image = new Pixbuf.from_file("full_bg_image.webp");
int gap_position = ImageProcessor.find_gap(bg_image, full_bg_image);
print("Gap position: %d\n", gap_position);
return 0;
}
3. 模拟拖动滑块
在这里,我们将模拟人类拖动滑块的行为。由于Vala没有直接的Selenium支持,我们将利用Python来控制浏览器进行拖动。
首先,用Python生成拖动轨迹:
python
# generate_tracks.py
import numpy as np
def bezier_curve(t):
return 3 * t * (1 - t)**2 + 3 * (1 - t) * t**2 + t**3
def generate_tracks(distance):
tracks = []
for i in range(101):
t = i / 100
x = int(bezier_curve(t) * distance)
tracks.append(x)
return tracks
if __name__ == "__main__":
import sys
distance = int(sys.argv[1])
tracks = generate_tracks(distance)
print(tracks)
然后,用Python和Selenium模拟拖动滑块:
python
# simulate_drag.py
from selenium import webdriver
import time
import subprocess
import json
gap_position = 100 # 从 Vala 程序获取
result = subprocess.run(['python3', 'generate_tracks.py', str(gap_position)], stdout=subprocess.PIPE)
tracks = json.loads(result.stdout.decode('utf-8'))
browser = webdriver.Chrome()
browser.get('https://account.ch.com/NonRegistrations-Regist')
knob = browser.find_element_by_class_name('gt_slider_knob')
actions = webdriver.ActionChains(browser)
actions.click_and_hold(knob).perform()
for track in tracks:
actions.move_by_offset(track, 0).perform()
time.sleep(0.02)
actions.release().perform()
browser.quit()
4. 调用Python脚本
最后,在Vala程序中调用Python脚本生成轨迹并模拟滑块拖动。
vala
public static int main(string[] args) {
int gap_position = 100; // 从图像处理步骤获取
try {
Process.spawn_command_line_sync("python3 generate_tracks.py " + gap_position.to_string(), out string stdout, out string stderr, out int exit_status);
print("Tracks generated: %s\n", stdout);
Process.spawn_command_line_sync("python3 simulate_drag.py", out stdout, out stderr, out exit_status);
} catch (SpawnError e) {
print("Error: %s\n", e.message);
}
return 0;
}