使用LispFlavored Erlang破解滑块验证码的实现

本文将演示如何使用 Lisp Flavored Erlang (LFE) 语言编写滑块验证码破解程序。LFE 是一种基于 Erlang VM 的 Lisp 方言,具备 Erlang 的并发优势,同时保留了 Lisp 的简洁与灵活性。我们将使用 LFE 来完成从下载验证码图片到发送破解请求的整个流程。

1. 下载验证码图片
我们首先需要从验证码服务器下载背景图和滑块前景图。LFE 可以直接调用 Erlang 的库来处理 HTTP 请求和文件下载。

lisp

(defmodule captcha-cracker
  (export (download-images 0)))

(defun download-images ()
  (let ((UrlBg "http://captcha.com/bg.png")
        (UrlFg "http://captcha.com/fg.png"))
    (httpc:request (list 'get UrlBg [] ""))
    (file:write_file ("bg.png" (binary_to_list (hd (httpc:response_body)))))
    (httpc:request (list 'get UrlFg [] ""))
    (file:write_file ("fg.png" (binary_to_list (hd (httpc:response_body)))))
    (io:format "验证码图片已下载~n")))
2. 计算滑动距离
接着,我们需要比较背景图和前景图的像素差异,以确定滑块需要滑动的距离。在 LFE 中,我们可以使用递归与模式匹配来实现这一点。

lisp

(defmodule captcha-cracker
  (export (compare-images 2 find-difference 0)))

(defun compare-images (Fg Bg Index)
  (cond
    ((or (null Fg) (null Bg)) Index)
    ((= (hd Fg) (hd Bg))
      (compare-images (tl Fg) (tl Bg) (+ Index 1)))
    (true Index)))

(defun find-difference ()
  (let ((Fg (file:read_file "fg.png"))
        (Bg (file:read_file "bg.png")))
    (compare-images Fg Bg 0)))
3. 生成滑动轨迹
为了使破解过程更具真实性,我们生成一条随机滑动轨迹,模拟人类手动滑动的行为。

lisp

(defmodule captcha-cracker
  (export (generate-track 2 random-step 0)))

(defun random-step ()
  (+ 1 (rand 4)))

(defun generate-track (Distance CurrentPos Track)
  (cond
    ((> CurrentPos Distance) Track)
    (true
      (let ((Step (random-step)))
        (generate-track Distance (+ CurrentPos Step) (append Track [CurrentPos]))))))
4. 发送验证请求
一旦生成了滑动轨迹并计算出了滑动距离,我们将模拟滑动行为,并将数据通过 HTTP 请求发送至服务器。

lisp

(defmodule captcha-cracker
  (export (send-verification 2)))

(defun send-verification (Track Distance)
  (let ((JsonData (io_lib:format "{\"distance\": ~p, \"track\": ~p}" [Distance Track])))
    (httpc:request (list 'post "http://captcha.com/verify" [] JsonData))
    (io:format "验证请求已发送~n")))
5. 主程序
将上述步骤组合在一起,形成完整的验证码破解程序。

lisp

(defmodule captcha-cracker
  (export (crack-captcha 0)))

(defun crack-captcha ()
  (download-images)
  (let ((Distance (find-difference)))
    (io:format "滑动距离为: ~p~n" [Distance])
    (let ((Track (generate-track Distance 0 [])))
      (send-verification Track Distance))))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值