题目大意:有一个写满数字的n*m矩阵,要从矩阵中找到长度至少为4的公差为1的等差数列,且只能通过上下左右四条边连接,问能找到多少个这样的数列
思路:dfs搜图通过记忆化搜索的方式来优化,首先要找到起点,对于在矩阵内的点,我们判断他四个方向有没有比它小1的格子,有的话就不是起点,其次每dfs遍历一个点,就做上标记,不遍历重复的点,然后用三维数组c[i][j][cnt],来记录从i,j开始向后搜索cnt的长度能找到几个数列,cnt大于4的统一记成4,在dfs遍历时,对于当前的点,找四周值比它大1的点,然后维护c数组,每一次起点开始的dfs结束时,记录c[i][j][4]
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N = 1005;
ll mod = 1e9 + 7;
int a[N][N];
int opi[5] = { 0,1,0,-1,0 }, opj[5] = { 0,0,1,0,-1 };
bool vis[N][N],vis2[N][N];
ll c[N][N][8];
int n, m;
void dfs(int i, int j)
{
vis[i][j] = vis2[i][j] = 1;
ll ans = 0;
bool temp = 0;
for (int op = 1; op <= 4; op++)
{
int ni = i + opi[op], nj = j + opj[op];
if (a[ni][nj] == a[i][j] + 1 && ni >= 1 && ni <= n && nj <= m && nj >= 1)
{
temp = 1;
if(!vis2[ni][nj])
dfs(ni, nj);
for (int k = 1; k <= 4; k++)
{
c[i][j][min(k + 1, 4)] = (c[i][j][min(k + 1, 4)] + c[ni][nj][k]) % mod;
}//遍历k,来找到下个点的长度是多少
}
}
if (!temp)
{
c[i][j][1] = 1;
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
scanf("%d", &a[i][j]);
}
}
ll ans = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (vis[i][j])//遍历过的点不会是起点
continue;
for (int op = 1; op <= 4; op++)
{
int ni = i + opi[op], nj = j + opj[op];
if(ni >= 1 && ni <= n && nj <= m && nj >= 1)
if (a[ni][nj] + 1 == a[i][j])//周围有更小值的不是起点
{
vis[i][j] = 1;
}
}
if (!vis[i][j])
{
dfs(i, j);
ans = (ans + c[i][j][4]) % mod;//只记录长度大于等于4的数列长度
}
}
}
cout << ans;
return 0;
}