Datax数据采集

一、Datax介绍

官网: DataX/introduction.md at master · alibaba/DataX · GitHub

DataX 是阿里云 DataWorks数据集成 的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。

DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS, databend 等各种异构数据源之间高效的数据同步功能。

Datax架构说明

Datax数据处理流程

二、Datax的使用说明

Datax在使用是主要编写json文件,在json中定义read如何读取 write如何写入

  • 格式

{
    "job": {
        "setting": {
            "speed": {
                 "channel": 3
            },
            "errorLimit": {
                "record": 0,
                "percentage": 0.02
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "column": [
                            "id",
                            "name"
                        ],
                        "splitPk": "db_id",
                        "connection": [
                            {
                                "table": [
                                    "table"
                                ],
                                "jdbcUrl": [
     "jdbc:mysql://127.0.0.1:3306/database"
                                ]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print":true
                    }
                }
            }
        ]
    }
}
​

简单使用

读取mysql数据在终端中输出结果

-- 在mysql中创建库表
create database itcast charset=utf8;
use itcast;
create table student(
    id int,
    name varchar(20),
    age int,
    gender varchar(20)
);
insert into student values(1,'张三',20,'男'),
                          (2,'李四',21,'男'),
                          (3,'王五',19,'男'),
                          (4,'赵六',22,'男');

编写datax的json文件

{
    "job": {
        "setting": {
            "speed": {
                 "channel": 3
            },
            "errorLimit": {
                "record": 0,
                "percentage": 0.02
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "column": [
                            "id",
                            "name",
                            "age",
                            "gender"
                        ],
                        "splitPk": "id",
                        "connection": [
                            {
                                "table": [
                                    "student"
                                ],
                                "jdbcUrl": [
     "jdbc:mysql://192.168.88.80:3306/itcast"
                                ]
                            }
                        ]
                    }
                },
               "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print":true
                    }
                }
            }
        ]
    }
}
​

在datax的job目录下创建json文件

cd /export/server/datax/job/

执行json文件中的配置信息

cd /export/server/datax/bin
python datax.py ../job/mysql_data.json 

Mysql使用sql语句读取数据

sql语句可以实现对数据的筛选过滤

{
    "job": {
        "setting": {
            "speed": {
                 "channel":1
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "connection": [
                            {
                                "querySql": [
                                    "select * from student where id>=3;"
                                ],
                                "jdbcUrl": [
                                    "jdbc:mysql://192.168.88.80:3306/itcast"
                                ]
                            }
                        ]
                    }
                },
                "writer": {
                    "name": "streamwriter",
                    "parameter": {
                        "print": true,
                        "encoding": "UTF-8"
                    }
                }
            }
        ]
    }
}

三、Mysql数据导入HDFS

读取mysql数据

写入到hdfs

{
    "job": {
        "setting": {
            "speed": {
                 "channel":1
            }
        },
        "content": [
            {
                "reader": {
                     "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "column": [
                            "id",
                            "name",
                            "age",
                            "gender"
                        ],
                        "splitPk": "id",
                        "connection": [
                            {
                                "table": [
                                    "student"
                                ],
                                "jdbcUrl": [
     "jdbc:mysql://192.168.88.80:3306/itcast"
                                ]
                            }
                        ]
                    }
                },
                "writer": {
                   "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://192.168.88.80:8020",
                        "fileType": "text",
                        "path": "/data",
                        "fileName": "student",
                        "column": [
                            {
                                "name": "id",
                                "type": "int"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "age",
                                "type": "INT"
                            },
                            {
                                "name": "gender",
                                "type": "string"
                            }
                       
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": "\t"
                    }
                }
            }
        ]
    }
}

使用sql语句导入需要指定jdbc连接参数

当数据中有中文是需要增加参数

jdbc:mysql://192.168.88.80:3306/itcast?useSSL=false&characterEncoding=utf8

{
    "job": {
        "setting": {
            "speed": {
                 "channel":1
            }
        },
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "connection": [
                            {
                                "querySql": [
                                    "select * from student where gender='男';"
                                ],
                                "jdbcUrl": [
                                    "jdbc:mysql://192.168.88.80:3306/itcast?useSSL=false&characterEncoding=utf8"
                                ]
                            }
                        ]
                    }
                },
                "writer": {
                   "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://192.168.88.80:8020",
                        "fileType": "text",
                        "path": "/data",
                        "fileName": "student",
                        "column": [
                            {
                                "name": "id",
                                "type": "int"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "age",
                                "type": "INT"
                            },
                            {
                                "name": "gender",
                                "type": "string"
                            }
                       
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": "\t"
                    }
                }
            }
        ]
    }
}

四、Mysql数据导入Hive表

hive的表是由两部分构成的

表的元数据 hive的metastore管理

表的行数据 hdfs上以文件的方式存储

导入hive表的数据本质就是将mysql中的数据导入hdfs中,将数据按照hive表的路径进行导入

1-启动hive服务 metastore hiveserve2

 

2-配置datagrip连接

 

3-创建hive表

show databases ;
​
create database itcast;
use  itcast;
create table stu(
     id int,
    name string,
    age int,
    gender string
)row format delimited  fields terminated by ',';
​
select * from stu;

4-hive表的数据导入,本质就是将数据写入hdfs的表目录中

编写json文件

{
    "job": {
        "setting": {
            "speed": {
                 "channel":1
            }
        },
        "content": [
            {
                "reader": {
                     "name": "mysqlreader",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "column": [
                            "id",
                            "name",
                            "age",
                            "gender"
                        ],
                        "splitPk": "id",
                        "connection": [
                            {
                                "table": [
                                    "student"
                                ],
                                "jdbcUrl": [
     "jdbc:mysql://192.168.88.80:3306/itcast"
                                ]
                            }
                        ]
                    }
                },
                "writer": {
                   "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://192.168.88.80:8020",
                        "fileType": "text",
                        "path": "/user/hive/warehouse/itcast.db/stu",
                        "fileName": "stu",
                        "column": [
                            {
                                "name": "id",
                                "type": "int"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "age",
                                "type": "INT"
                            },
                            {
                                "name": "gender",
                                "type": "string"
                            }
                       
                        ],
                        "writeMode": "append",
                        "fieldDelimiter": ","
                    }
                }
            }
        ]
    }
}

五、Datax-web介绍

GitHub - WeiYe-Jing/datax-web: DataX集成可视化页面,选择数据源即可一键生成数据同步任务,支持RDBMS、Hive、HBase、ClickHouse、MongoDB等数据源,批量创建RDBMS数据同步任务,集成开源调度系统,支持分布式、增量同步数据、实时查看运行日志、监控执行器资源、KILL运行进程、数据源信息加密等。

datax-web是基于datax进行的二次开发,提供了一个可视化web页面,方便开发人员定义datax任务,并且能自动生成json文件

六、Datax-Web使用

6-1 启动服务

/export/server/datax-web-2.1.2/bin/start-all.sh

6-2 访问页面

http://hadoop01:9527/index.html

 

6-3 使用

6-3-1 创建项目

 

 

6-3-2 创建数据源连接

 

 

 

6-3-3 任务管理的模板生成

可以设置定时执行

 

 

 

 

 

6-3-4 生成datax任务

 

 

 

 

 

 

6-3-5 任务执行

 

 

 

6-3-6 定时执行

一. DataX3.0 概览  DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。  设计理念  为了解决异构数据源同步问题,DataX 将复杂的网状的同步链路变成了星型数据链路,DataX 作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到 DataX,便能跟已有的数据源做到无缝数据同步。  当前使用现状  DataX 在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了 6 年之久。目前每天完成同步 8w 多道作业,每日传输数据量超过 300TB。  此前已经开源 DataX1.0 版本,此次介绍为阿里巴巴开源全新版本 DataX3.0,有了更多更强大的功能和更好的使用体验。Github 主页地址:https://github.com/alibaba/DataX。  二、DataX3.0 框架设计  DataX 本身作为离线数据同步框架,采用 Framework plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。  Reader:Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。  Writer: Writer 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。  Framework:Framework 用于连接 reader 和 writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。  三. DataX3.0 插件体系  经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 数据库、NOSQL、大数据计算系统都已经接入。DataX 目前支持数据如下:  DataX Framework 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他数据源。详情请看:DataX 数据源指南  四、DataX3.0 核心架构  DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。  核心模块介绍:  DataX 完成单个数据同步的作业,我们称之为 Job,DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。  DataXJob 启动后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分数据的同步工作。  切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的 Task 重新组合,组装成 TaskGroup (任务组)。每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发数量为5。  每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader>Channel>Writer 的线程来完成任务。 标签:数据同步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值