BP 神经网络在非遗文化传承数据处理中的应用
摘要: 非物质文化遗产作为人类文明的瑰宝,承载着丰富的历史、艺术和社会价值。然而,在现代社会的快速变迁中,非遗文化面临着传承困境。本文深入探讨了 BP 神经网络在非遗文化传承数据处理中的应用,涵盖数据采集与整理、模型构建、训练与优化以及实际应用场景,通过丰富的代码示例展示具体实现过程,旨在借助先进技术助力非遗文化的保护、传承与创新发展。
一、引言
非物质文化遗产涵盖了民间文学、传统音乐、舞蹈、戏剧、曲艺、传统技艺、医药等诸多领域,它们以口传心授、实践操作等方式代代相传。但随着全球化、工业化进程的加速,非遗文化的生存土壤发生变化,传承人群体萎缩、传承资料散失等问题凸显。利用现代信息技术对非遗文化相关数据进行有效处理,成为解决传承难题的关键路径之一。BP 神经网络凭借其强大的非线性映射能力和自学习特性,能够从海量复杂的非遗数据中挖掘规律、构建模型,为非遗文化的传承与发展注入新动力。
二、BP 神经网络原理
BP(Back Propagation)神经网络是一种多层前馈神经网络,由输入层、一个或多个隐藏层和输出层组成。神经元之间通过权重连接,信息从输入层依次经过隐藏层的处理,最终到达输出层。在正向传播过程中,输入数据通过各层神经元的加权求和,并经过激活函数的非线性变换,得到输出结果。若输出结果与实际的期望输出存在误差,便进入反向传播阶段。在反向传播过程中,误差从输出层逐层反向传播到输入层,依据误差调整各层神经元之间的“连接权重,使得网络的输出不断逼近期望值。通过多次迭代训练,网络逐渐收敛,从而学习到输入数据与输出数据之间的复杂映射关系,能够对新的输入数据进行准确的预测和判断,进而应用于非遗文化传承数据处理的各个环节,如非遗作品分类、传承趋势预测等。
三、非遗文化传承数据采集与整理
- 数据采集
从多个源头收集非遗文化相关数据:
- 文献资料数字化:对古籍、方志、学术论文等纸质文献进行扫描、OCR(光学字符识别)转化,提取有关非遗项目的起源、发展脉络、技艺特点、传承谱系等文本信息。例如,对于传统剪纸技艺,可从民间工艺典籍中搜集不同流派剪纸的风格特征描述、历史上知名剪纸艺人的生平及作品介绍。
- 实地调研与访谈记录:深入非遗发源地,走访传承人、当地居民,采用录音、录像设备记录口述历史、传统技艺演示过程、民俗活动现场等。如调研某传统戏曲时,录制老艺人的唱腔教学、剧目排练过程,以及当地传统节日期间该戏曲的演出盛况。
- 多媒体素材收集:收集非遗项目相关的图片、音频、视频作品,涵盖非遗技艺的成品展示、创作过程步骤、传统音乐舞蹈表演实况等。以传统木雕为例,汇聚不同年代、风格木雕作品的高清图片,以及木雕大师现场雕刻的视频教程。
- 网络数据抓取:利用网络爬虫技术从社交媒体、文化论坛、非遗专题网站等抓取大众对非遗项目的讨论热度、评价反馈、传播趋势等数据。例如,在微博平台上搜索非遗话题标签,获取用户分享的非遗体验、创意作品,以及相关话题的热度走势。
以下是一个使用 Python 的 Scrapy 框架进行简单非遗文化相关网页数据抓取的示例代码:
import scrapy
class NonHeritageSpider(scrapy.Spider):
name = "non_heritage"
start_urls = ["https://www.example-non-heritage-website.com"]
def parse(self, response):
# 提取非遗项目名称
heritage_names = response.css('.heritage-item h2::text').getall()
# 提取项目介绍
descriptions = response.css('.heritage-item p::text').getall()
for name, desc in zip(heritage_names, descriptions):
yield {
'name': name,
'description': desc
}
# 跟进下一页链接(如果存在)
next_page = response.css('.next-page-link::attr(href)').get()
if next_page:
yield scrapy.Request(next_page, callback=self.parse)
- 数据整理与标注
- 数据清洗:由于数据来源广泛,采集过程易引入噪声,如文献扫描中的错字、实地调研录音的背景杂音、网络数据的冗余信息等。对于文本数据中的错字,可借助自然语言处理工具进行拼写检查与纠正;针对音频中的杂音,使用音频处理软件降噪。例如,利用 Python 的 TextBlob 库对非遗文本资料进行简单的拼写纠错:
from textblob import TextBlob
text = "这副剪纸作品展现了传统的喜上梅稍图案。"
corrected_text = TextBlob(text).correct()
print(corrected_text)
- 数据分类标注:依据非遗分类体系,将采集的数据分类标注,如传统技艺类、民俗类、传统美术类等。同时,对具体非遗项目进一步细分,像传统刺绣可细分为苏绣、湘绣等不同流派。以非遗图片数据为例,通过人工标注结合少量样本训练的图像分类模型,为图片打上相应的类别标签:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 定义图像数据生成器,用于数据增强和加载
train_datagen = ImageDataGenerator(rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# 加载并标注训练数据
train_generator = train_datagen.flow_from_directory(
'non_heritage_images/', # 图片存放目录
target_size=(150, 150), # 图片缩放尺寸
batch_size=32,
class_mode='categorical')
# 构建简单卷积神经网络模型(此处仅示意,可按需优化)
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(len(train_generator.class_indices), activation='softmax')
])
# 编译模型
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# 训练模型
model.fit(train_generator, epochs=10)
- 特征提取与编码:从不同类型非遗数据中提取关键特征。对于文本数据,可使用词袋模型、TF-IDF(词频 - 逆文档频率)向量等将文本转化为数值特征;针对图像,提取颜色直方图、纹理特征、形状特征等。例如,使用 Python 的 Scikit-learn 库计算非遗文本描述的 TF-IDF 特征:
from sklearn.feature_extraction.text import TfidfVectorizer
texts = ["苏绣以精细针法闻名,色彩淡雅。", "湘绣针法奔放,颜色鲜艳。"]
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
print(tfidf_matrix.toarray())
四、BP 神经网络模型构建
使用 Python 的 Keras 库构建 BP 神经网络模型,以下是一个用于预测非遗项目传承活力指数(取值 0 - 100,数值越高活力越强)的示例代码:
from keras.models import Sequential
from keras.layers import Dense
# 定义模型结构
model = Sequential()
# 假设输入数据有 10 个特征(经过特征工程后的非遗数据,如网络热度、传承人数、文献提及次数、作品创新频率等)
model.add(Dense(20, input_dim=10, activation='relu'))
# 隐藏层
model.add(Dense(16, activation='relu'))
# 输出层,预测传承活力指数,输出维度为 1
model.add(Dense(1, activation='linear'))
# 编译模型,使用均方误差作为损失函数,Adam 优化器
model.compile(loss='mean_squared_error', optimizer='adam')
在这个模型中,输入层有 10 个神经元,对应输入的 10 个非遗项目相关特征数据,通过 ReLU 激活函数增强模型的非线性表达能力后传递到隐藏层。隐藏层有 16 个神经元,同样使用 ReLU 激活函数。输出层有 1 个神经元,直接输出预测的传承活力指数值。模型编译时选择了均方误差作为损失函数,Adam 优化器来更新权重,旨在最小化预测活力指数与真实活力指数之间的误差平方和。
五、模型训练与优化
- 数据划分
将预处理后的数据划分为训练集、验证集和测试集,通常按照 70%、15%、15%的比例进行划分:
from sklearn.model_selection import train_test_split
# 分离特征和标签,假设最后一列是非遗项目传承活力指数数据
X = filtered_data.iloc[:, :-1].values
y = filtered_data.iloc[:, -1].values
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 从训练集中进一步划分出验证集
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)
- 模型训练
使用训练集对模型进行训练:
# 训练模型
model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_val, y_val))
在训练过程中,模型会根据训练数据不断调整权重,通过多次迭代(epochs
)来优化模型,batch_size
指定了每次更新权重时使用的数据样本数量,同时在验证集上进行验证,监控模型的性能,防止过拟合。
3. 模型优化
可以采用多种方法对 BP 神经网络进行优化,如调整网络结构(增加或减少隐藏层、神经元数量)、改变激活函数、采用正则化技术等。例如,尝试使用 L2 正则化来防止过拟合:
from keras import regularizers
# 在模型构建时添加 L2 正则化项
model = Sequential()
model.add(Dense(20, input_dim=10, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(16, activation='relu', kernel_reguralizers.l2(0.01)))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
还可以使用早停法(Early Stopping)来在验证集损失不再降低时停止训练,避免过度训练:
from keras.callbacks import EarlyStopping
# 定义早停法回调函数
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
# 训练模型并应用早停法
model.fit(X_train, y_train, epochs=100, batch_size=16, validation_data=(X_val, y_val), callbacks=[early_stopping])
六、非遗文化传承中的应用
- 传承趋势预测
使用训练好的模型对非遗项目未来的传承趋势进行预测:
# 假设新采集到一组非遗项目相关数据
new_data = np.array([[0.2, 0.5, 0.3, 0.7, 0.4, 0.6, 0.8, 0.1, 0.9, 0.3]]) # 示例数据,需根据实际情况替换
# 进行预测
predicted_index = model.predict(new_data)
print('预测的非遗项目传承活力指数:', predicted_index[0][0])
根据预测结果,文化部门、非遗保护机构可以提前制定针对性的保护策略,如对活力指数低的项目加大资金扶持、培训传承人的力度,对活力指数高且呈上升趋势的项目推动市场化发展、创新传承模式。
2. 作品分类与识别
构建基于 BP 神经网络的非遗作品分类模型,快速准确识别非遗作品所属类别、流派。在非遗展览、数字化博物馆建设中,利用该模型实现作品的智能分类展示,提升观众体验。例如,游客拍摄一张木雕作品照片上传至非遗 APP,后台通过图像识别模型(以 BP 神经网络为核心)判断作品风格流派,并推送相关介绍资料。以下是一个简单的图像分类模型预测示例代码(基于已训练模型):
from keras.preprocessing import image
import numpy as np
# 加载预训练模型
model = tf.keras.models.load_model('non_heritage_image_classifier.h5')
# 加载待分类图片,预处理
img = image.load_img('unknown_woodcarving.jpg', target_size=(150, 150))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.
# 预测类别
prediction = model.predict(img_array)
class_index = np.argmax(prediction)
print('预测的木雕作品类别:', class_index)
- 个性化推荐与传承教育
结合用户兴趣数据(如用户浏览非遗网站记录、参与非遗活动偏好等)与非遗项目特征,利用 BP 神经网络构建推荐系统,为用户推荐感兴趣的非遗项目、课程、活动。在非遗传承教育中,根据学员学习进度、知识掌握情况,推荐合适的进阶学习内容,提高传承教育的针对性与效率。例如,某非遗线上学习平台利用用户学习数据训练 BP 神经网络模型,为学员量身定制学习路径:
# 假设已有用户学习数据(包含用户特征、学习进度等)和非遗项目知识图谱
# 构建模型(简化示意,实际需复杂处理用户与非遗项目关联)
model = Sequential()
model.add(Dense(16, input_dim=8, activation='relu'))
model.add(Dense(12, activation='relu'))
model.add(Dense(len(non_heritage_items), activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 训练模型
model.fit(user_learning_data, target_learning_paths, epochs=50)
# 为新用户推荐学习路径
new_user_data = np.array([[0.3, 0.6, 0.2, 0.8, 0.5, 0.7, 0.4, 0.9]])
recommended_path = model.predict(new_user_data)
print('推荐的非遗学习路径:', recommended_path)
七、结论
BP 神经网络在非遗文化传承数据处理中展现出巨大潜力,通过对非遗数据的广泛采集、精细整理、合理建模、科学训练与优化,能实现传承趋势预测、作品智能分类、个性化推荐等多元功能,为非遗文化的保护、传承与创新发展赋能。然而,非遗文化数据的复杂性、专业性以及传承场景的多样性仍对模型提出诸多挑战,未来需结合非遗领域专家知识,持续优化模型架构、提升数据质量,探索融合更多先进技术,推动非遗文化在数字化时代大放异彩。
请注意,以上代码和示例仅为简化的演示,实际的非遗文化传承数据处理项目需要更深入的领域知识、更复杂的数据处理流程和更精细的模型调校,以确保技术应用切实助力非遗传承事业。