基础知识 特征值分解 如果一个向量 v 是方阵 A 的特征向量,可以表示成下面的形式: Av=λv 其中, λ 为特征向量 v 对应的特征值,矩阵 A 的特征向量是相互正交的。 特征值分解是将矩阵 A 分解为如下形式: A=Q∑Q−1 其中,矩阵 Q 是 A 的特征向量组成的矩阵, ∑ 是对角矩阵。 奇异值分解 如果矩阵 A 不是方阵,是 m∗n 的矩阵, m≥n 。奇异值分解是将矩阵 A 分解成如下形式: A=U∑VT 其中, U 是 m∗m 的方阵,里面的向量为左奇异向量,是相互正交的, V 是 n∗n 的方阵,里面的向量为右奇异向量,是相互正交的, ∑ 是 m∗n 的对角矩阵,对角线上的元素为奇异值。 关于SVD的详细解释和实际含义,请参考 数据降维–SVD&CUR。 两者之间的关系 (