数据分析的背景
随着计算机技术全面地融入社会生活,网络数据得到了
爆发性
地增长,驱使着人们进入了一个崭新的大数据时代
。数据分析是指用适当的统计分析方法对收集来的大量数据
进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析
是为了提取有用信息
和形成结论
而对数据加以详细研究和概括总结的过程。
思考:
数据库里面的数据这么多,怎么
快速
地拿到有价值
的数据呢?
答:
数据分析就可以从
海量数据
中获得潜藏的有价值的信息,帮助企业或个人预测
未来的趋势和行为
。
结论 :
不管你从事什么行业,掌握了
数据分析能力
,往往在其岗位上更有竞争力
。
什么是数据分析
思考:
什么是数据分析呢?
答:
数据分析是使用适当的
统计分析方法
对收集来的大量数据
进行分析,从中提取有用信息
和形成结论
,并加以详细研究
和概括总结
的过程。
数据分析的目的:
将隐藏在一大批看似杂乱无章的数据信息集中提炼出来有用的数据,以找出所研究对象的内在规律。
在统计学领域
中,数据分析可以划分为如下三类
:
类目 | 描述 |
---|---|
描述性数据分析 | 从一组数据中,可以摘要 并且描述 这份数据的集中和离散情形。 |
探索性数据分析 | 从海量数据 中找出规律,并产生分析模型 和研究假设 。 |
验证性数据分析 | 验证科研假设测试所需的条件是否达到,以保证验证性分析的可靠性 。 |
数据分析的应用场景
应用 | 方法及其结果 |
---|---|
营销 方面 | 通过会员卡形式获得消费者的个人信息 ,以便对消费者的购买信息进一步研究其购买习惯 ,发现各类有价值的目标群体 。 |
医疗 方面 | 医生通过记录 和分析 婴儿的心跳来监视早产婴儿和患病婴儿的情况,并针对婴儿的身体可能会出现的不适症状做出预测 ,这样可以帮助医生更好的救助患儿。 |
零售 方面 | 在美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长! |
网络安全 方面 | 新型的病毒防御系统可以使用数据分析技术 ,建立潜在攻击识别分析模型 ,监测大量 网络活动数据和相应的访问行为,识别可能进行入侵的可疑模式。 |
交通物流 方面 | 用户可以通过业务系统和GPS定位系统获得数据 ,使用数据构建交流状况预测分析模型 ,有效预测实时路况、物流状况、车流量、货物吞吐量,进而提前补货,制定库存管理策略。 |
数据分析的流程
数据分析大致可以分为以下五个阶段
:
为什么选择Python做数据分析
思考?
为什么选择
Python
做数据分析?
答:
选择Python做数据分析,主要考虑的是Python
具有以下优势
:
- 语法
简单
精炼,适合初学者入门 - 拥有一个
巨大且活跃
的科学计算社区 - 拥有强大的
通用
编程能力 - 人工智能时代的通用语言
方便
对接其它语言