Matlab 去趋势处理

本文介绍了数据处理中的去趋势技术,用于去除传感器数据的偏移,以便更专注于波动分析。文章提供了两种方法:使用`detrend`函数进行连续线性趋势处理,以及利用最小二乘法的`polydetrend`函数进行多项式拟合消除趋势。通过实例展示了这两种方法的应用,并给出了MATLAB代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

去趋势处理可以去除传感器获取数据时产生的偏移,可以将数据分析集中在波动上

2.原理

对数据减去一条最优(拟合)的直线,平面或者曲面,使得处理后的数据均值为零

3.函数

3.1连续线性趋势

 y  = detrend(x)     # 从x的数据中去除最优的直线拟合

 y = detrend(x, n)  # 当n = 0 , 去除均值;n = 1, x去除线性趋势;n = 2 ,去除二次线性趋势
clc;
clear all;
close all;

t = 0:20
x = 3*sin(t) + t
y = detrend(x)
y1 = detrend(x,2)

figure(1)
plot(t, x, t, y, t, x-y, "k:")
legend("input data", "Detrend data", "trend","location","northwest")

3.2 最小二乘法拟合消除

[y,xtrend]=polydetrend(x,fs,m)  # fs:采样频率; m:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值