Median of Two Sorted Arrays
Difficulty:Hard
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3] nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5分析:
就是求两个排好序的数组的中值,如果两个数组的数字个数和是奇数,则中值就是两个数组排序的中间值,如果是偶数,就是两个数组排序的中间两个值的均值。
因为对时间复杂度有要求,要求达到O(log (m+n)), 所以不能对所有的数进行排序后再选取中间值,应该要提前计算好中间值是哪个。
在读取数组时,会出现一个数组已经遍历完了,还没有找到中值的情况,需要注意这种情况,不要越界读取数组。
我的实现方法是先求两个数组长度和的一半并取整(假设为m),找到两个数组排序时第m位以及第m+1位的数值,如果两个数组长度和是奇数,则第m+1位的数值就是中值,如果两个数组长度和是偶数,则第m位以及第m+1位数值的和的均值就是中值。
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int quantity = nums1.size() + nums2.size();//两个数组长度和
float sit = (float)quantity / 2;//长度和的一半
int i_sit = (int)sit;//长度和的一半再取整
int a=0,b=0,k=0;
int median = -1;//保存当前中值数值
int next = -1;//保存当前中值的下一位数值
while (k < i_sit+1){//在k达到当前中值的下一位之前一直比对
if (a == nums1.size()){//第一个数组已经遍历完的情况
median = next;
next = nums2.at(b);
b++;
k++;
continue;
}
if (b == nums2.size()){//第而个数组已经遍历完的情况
median = next;
next = nums1.at(a);
a++;
k++;
continue;
}
if (nums1.at(a) < nums2.at(b)){
median = next;
next = nums1.at(a);
a++;
k++;
}
else{
median = next;
next = nums2.at(b);
b++;
k++;
}
}
if (sit - (int)sit == 0){//数组长度和为偶数
return (double)(median + next) / 2;
}
else{//数组长度和为奇数
return (double)next;
}
}