3、Python编程:基础练习与决策结构解析

Python编程:基础练习与决策结构解析

1. 编程基础练习

1.1 风 chill 指数计算

在寒冷天气中,风会让空气感觉比实际更冷,这种现象被称为风 chill。2001 年,加拿大、英国和美国采用了以下公式来计算风 chill 指数:
[WCI = 13.12 + 0.6215Ta - 11.37V^{0.16} + 0.3965TaV^{0.16}]
其中,$Ta$ 是摄氏温度,$V$ 是风速(千米/小时)。

以下是实现该计算的 Python 程序:

# 读取用户输入的温度和风速
Ta = float(input("请输入摄氏温度: "))
V = float(input("请输入风速(千米/小时): "))

# 检查温度和风速是否在有效范围内
if Ta <= 10 and V > 4.8:
    # 计算风 chill 指数
    WCI = 13.12 + 0.6215 * Ta - 11.37 * (V ** 0.16) + 0.3965 * Ta * (V ** 0.16)
    # 四舍五入到最接近的整数
    WCI = round(WCI)
    print(f"风 chill 指数为: {WCI}")
else:
    print("输入的温度和风速不在有效范围内。")

1.2 温度单位转换

编写一个程序,从用户那里读取摄氏温度,然后显示其对应的华氏温度和开尔文温度。转换公式可在互联网上找到:
- 华氏温度:$F = C \times 1.8 + 32$

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值