概率论—线性回归的参数估计与显著性检验(浙江大学概统慕课重学)

文章介绍了线性回归模型的建立,包括如何通过最小化损失函数求解参数β1和β0。接着讨论了回归方程的显著性检验,如F检验用于整体模型的效果评估,以及t检验用于单个回归系数的显著性。此外,还提到了在多变量模型中,如何通过F检验进行变量的联合显著性检验。文章强调了理解和应用这些统计检验在模型构建中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归的参数估计

构建以下线性回归模型
在这里插入图片描述
当损失函数取最小值(对参数偏导为0)时,可联立方程组
在这里插入图片描述
解出β1、β0
在这里插入图片描述
在这里插入图片描述

线性回归的显著性检验

随后进行回归方程的检验:
检验假设:H0: β1=0,H1: β1 !=0

回归方程的检验——F检验

采用方差分析法:
在这里插入图片描述
df(ST)=n-1, df(SR)=1, df(SE)=n-2
(当有k个参数时,df(ST)=n-1, df(SR)=k, df(SE)=n-k-1)
可证ST=SR+SE
[](https://img-blog.csdnimg.cn/dcf229ad3254457f9c29b0b0f8481d68.png
SSE即SE,SSR即SR
SSE也叫未解释方差,是模型无法解释的变异部分;SSR也叫解释方差,是模型能解释的变异部分。
SSE越小,SSR越大,说明模型模拟效果越好
在这里插入图片描述
当F>F α (1, n-2),则说明模型有明显解释效果,β1 !=0

回归系数检验——t检验

在这里插入图片描述

联合检验–F检验

对于多变量模型,要判断同时去掉模型内数个变量是否对模型功能有显著影响,需要衡量SR在删减变量前后是否有显著增加

可参见知乎中的一篇文章 计量经济学对约束条件的联合检验:F统计量

今日心得:该学学怎么打数学公式了。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值