线性回归的参数估计
构建以下线性回归模型
当损失函数取最小值(对参数偏导为0)时,可联立方程组
解出β1、β0
线性回归的显著性检验
随后进行回归方程的检验:
检验假设:H0: β1=0,H1: β1 !=0
回归方程的检验——F检验
采用方差分析法:
df(ST)=n-1, df(SR)=1, df(SE)=n-2
(当有k个参数时,df(ST)=n-1, df(SR)=k, df(SE)=n-k-1)
可证ST=SR+SE
SSE即SE,SSR即SR
SSE也叫未解释方差,是模型无法解释的变异部分;SSR也叫解释方差,是模型能解释的变异部分。
SSE越小,SSR越大,说明模型模拟效果越好
当F>F α (1, n-2),则说明模型有明显解释效果,β1 !=0
回归系数检验——t检验
联合检验–F检验
对于多变量模型,要判断同时去掉模型内数个变量是否对模型功能有显著影响,需要衡量SR在删减变量前后是否有显著增加
可参见知乎中的一篇文章 计量经济学对约束条件的联合检验:F统计量
今日心得:该学学怎么打数学公式了。。。