方差分析ANOVA判断两个或以上总体均值是否有差异的显著性检验
进行方差分析必须具备三个基本的条件:
独立性. 数据是来自 r 个独立总体的简单随机样本.
正态性. r 个独立总体均为正态总体.
方差齐性. r 个正态总体的方差是相同的, 即满足假设
多样本单因素方差分析
在方差分析中,通常把研究对象的特征值即所考察的试验结果称为试验指标
本例中“索赔额”就是试验指标.·
对试验指标产生影响的原因称为因素
本例中“地区”即为因素
因素中各个不同状态称为水平
本例中“四个不同地区”即为四个水平
单因素方差分析,仅考虑有一个因素A对指标的影响,A有r个水平(情况),每种水平独立观测,假设都是正态分布,方差相同,均值可能不同,方差分析目的就是比较均值的差异。
H0:因素A各水平均值相等
H1:因素A各水平均值不全相等
计算符号表示如下
检验假设采用的方法是平方和分解。
假设数据总的差异用总离差平方和ST表示,ST分解为二个部分:
一部分是由于因素A引起的差异——效应平方和SA,衡量每个水平的均值与总体均值的差距(组间)
另一部分则由随机误差所引起的差异——误差平方和SE,每个水平内样本与水平均值的差距(组内)
因此,SA越大,则说明因素A引起的差异越大
SA共有r项,自由度为r-1;SE有n项,自由度为n-r
ST自由度为前两者相加,等于n-1
以F为检验统计量,F越大说明组间差异越大,越拒绝原假设(因素A各水平均值相同)
下图为本例方差分析表
所以,本例中保留H0。
多重检验
当否定H0时需确定多样本中两两是否均值相等,需多重检验
使用单因素方差分析,P<0.05,证明三个水平均值不全相等,以下进行两两检验
注:t双侧检验