概率论--方差分析(浙江大学概统慕课重学)

文章介绍了方差分析(ANOVA)用于检验两个或更多总体均值差异的显著性,强调了独立性、正态性和方差齐性的前提条件。通过分解总离差平方和为效应平方和与误差平方和,利用F统计量评估因素影响。当F值大时,拒绝原假设,表明因素各水平均值不全相等。在否定原假设后,可能需要进行两两比较的多重检验,如t检验。
摘要由CSDN通过智能技术生成

方差分析ANOVA判断两个或以上总体均值是否有差异的显著性检验

进行方差分析必须具备三个基本的条件:

独立性. 数据是来自 r 个独立总体的简单随机样本.

正态性. r 个独立总体均为正态总体.

方差齐性. r 个正态总体的方差是相同的, 即满足假设

多样本单因素方差分析

在方差分析中,通常把研究对象的特征值即所考察的试验结果称为试验指标

本例中“索赔额”就是试验指标.·

对试验指标产生影响的原因称为因素

本例中“地区”即为因素

因素中各个不同状态称为水平

本例中“四个不同地区”即为四个水平

单因素方差分析,仅考虑有一个因素A对指标的影响,A有r个水平(情况),每种水平独立观测,假设都是正态分布,方差相同,均值可能不同,方差分析目的就是比较均值的差异。

H0:因素A各水平均值相等

H1:因素A各水平均值不全相等

计算符号表示如下

检验假设采用的方法是平方和分解。

假设数据总的差异用总离差平方和ST表示,ST分解为二个部分:

一部分是由于因素A引起的差异——效应平方和SA,衡量每个水平的均值与总体均值的差距(组间)

另一部分则由随机误差所引起的差异——误差平方和SE,每个水平内样本与水平均值的差距(组内)

因此,SA越大,则说明因素A引起的差异越大

SA共有r项,自由度为r-1;SE有n项,自由度为n-r

ST自由度为前两者相加,等于n-1

以F为检验统计量,F越大说明组间差异越大,越拒绝原假设(因素A各水平均值相同)

下图为本例方差分析表

所以,本例中保留H0。

多重检验

当否定H0时需确定多样本中两两是否均值相等,需多重检验

使用单因素方差分析,P<0.05,证明三个水平均值不全相等,以下进行两两检验

注:t双侧检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值