文献阅读Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods--有监督降维部分

该文提出了一种方法,旨在寻找最佳的正交投影矩阵,将高维对称正定矩阵(SPD)集映射到低维空间,目标是最大化类间距离同时最小化类内距离。通过最大化类间散度与类内散度的比值来优化投影矩阵。算法包括初始化、梯度计算、步长计算和矩阵更新等步骤,以实现投影矩阵的迭代优化。
摘要由CSDN通过智能技术生成

• 输入:一个高维SPD矩阵的集合 X = X 1 , X 2 , … , X N \mathcal{X} = {X_1, X_2, \dots, X_N} X=X1,X2,,XN,每个矩阵 X i ∈ S d + X_i \in \mathbb{S}_{d}^{+} XiSd+,以及它们对应的类别标签 Y = y 1 , y 2 , … , y N \mathcal{Y} = {y_1, y_2, \dots, y_N} Y=y1,y2,,yN,每个标签 y i ∈ 1 , 2 , … , C y_i \in {1, 2, \dots, C} yi1,2,,C,其中 C C C是类别的总数。

• 输出:一个正交投影矩阵 P ∈ R d × k P \in \mathbb{R}^{d \times k} PRd×k,它将高维SPD矩阵映射到低维SPD矩阵,即 Z i = P T X i P ∈ S k + Z_i = P^T X_i P \in \mathbb{S}_{k}^{+} Zi=PTXiPSk+,其中 k < d k < d k<d是目标维度。

• 目标:找到一个最优的投影矩阵 P ⋆ P^{\star} P,使得低维SPD矩阵之间的类内距离最小,而类间距离最大,即

P ⋆ = arg ⁡ max ⁡ P J ( P ) = arg ⁡ max ⁡ P tr ( P T S B P ) tr ( P T S W P ) P^{\star} = \arg\max_{P} J(P) = \arg\max_{P} \frac{\text{tr}(P^T S_B P)}{\text{tr}(P^T S_W P)} P=argPmaxJ(P)=argPmaxtr(PTSWP)tr(PTSBP)
其中 S B S_B SB S W S_W SW分别是高维SPD流形上的类间散度矩阵和类内散度矩阵,它们的定义为
S B = 1 C ∑ c = 1 C N c ( μ c − μ ) ( μ c − μ ) T S_B = \frac{1}{C}\sum_{c=1}^{C} N_c (\mu_c - \mu)(\mu_c - \mu)^T SB=C1c=1CNc(μcμ)(μcμ)T
S W = 1 N ∑ i = 1 N ( X i − μ y i ) ( X i − μ y i ) T S_W = \frac{1}{N}\sum_{i=1}^{N} (X_i - \mu_{y_i})(X_i - \mu_{y_i})^T SW=N1i=1N(Xiμyi)(Xiμyi)T
其中 N c N_c Nc是第 c c c类的样本数, μ c \mu_c μc是第 c c c类样本的均值点, μ \mu μ是所有样本的均值点,它们都是高维SPD矩阵,并且用黎曼平均来计算。
• 算法:

• 初始化投影矩阵 P 0 P_0 P0为一个随机正交矩阵,并计算初始目标函数值 J ( P 0 ) J(P_0) J(P0)

• 迭代以下步骤,直到收敛或达到最大迭代次数:

• 计算梯度矩阵 G t = S W P t − P t S B G_t = S_W P_t - P_t S_B Gt=SWPtPtSB

• 计算梯度方向矩阵 Q t = P t G t T − G t P t T Q_t = P_t G_t^T - G_t P_t^T Qt=PtGtTGtPtT

• 计算步长 α t = tr ( Q t T G t ) tr ( Q t T S W Q t ) \alpha_t = \frac{\text{tr}(Q_t^T G_t)}{\text{tr}(Q_t^T S_W Q_t)} αt=tr(QtTSWQt)tr(QtTGt)

• 更新投影矩阵 P t + 1 = e − α t Q t P t P_{t+1} = e^{-\alpha_t Q_t} P_t Pt+1=eαtQtPt

• 计算目标函数值 J ( P t + 1 ) J(P_{t+1}) J(Pt+1)

• 如果 J ( P t + 1 ) > J ( P t ) J(P_{t+1}) > J(P_t) J(Pt+1)>J(Pt),则接受更新,否则拒绝更新并减小步长

• 返回最终的投影矩阵 P T P_T PT

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值