原文地址
前言
在前文交叉编译armv7运行环境以及嵌入式opencv的编译示例,我们已经构建了对应运行环境的交叉编译链,以及编译了opencv
作为用例。现在我们需要简单实现一个人脸检测程序,本着拒绝重复造轮子的思想我们使用开源库libfacedetection实现
实现
编译
和前文相同,我们这里的构建环境是CentOS Stream release 8 x86_64 GNU/Linux
以及Ubuntu 18.04.6 LTS x86_64 GNU/Linux
,运行环境为armv7l GNU/Linux
首先拉取libfacedetection
源码
mkdir /usr/local/facedetect && cd /usr/local/facedetect && git clone https://github.com/ShiqiYu/libfacedetection.git
然后根据写下交叉编译工具链的引用
cd libfacedetection && vim arm-gnueabi.toolchain.cmake
这里给出armv7l GNU/Linux
运行环境的参考
set(GCC_COMPILER_VERSION "" CACHE STRING "GCC Compiler version")
set(GNU_MACHINE "arm-linux-gnueabi" CACHE STRING "GNU compiler triple")
#指定工具链
set(CMAKE_C_COMPILER /usr/local/arm/arm-none-linux-gnueabihf/bin/arm-none-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /usr/local/arm/arm-none-linux-gnueabihf/bin/arm-none-linux-gnueabihf-g++)
#生成静态库
set(BUILD_SHARED_LIBS OFF)
#构建详细输出
set(CMAKE_VERBOSE_MAKEFILE ON)
#生成Release版本
set(CMAKE_BUILD_TYPE Release)
#libdetect选项
option(DEMO "" OFF)
option(ENABLE_AVX2 "" OFF)
option(ENABLE_NEON "" ON)
option(USE_OPENMP "" ON)
然后生成Makefile
mkdir build && cd build && cmake -DCMAKE_TOOLCHAIN_FILE=../arm-gnueabi.toolchain.cmake -DCMAKE_INSTALL_PREFIX=/usr/local/facedetect/install ..
最后构建安装,分别生成库文件和头文件到/usr/local/facedetect/install/lib
和/usr/local/facedetect/install/include
make && make install
测试
mkdir /usr/local/facedetect/sample && cd /usr/local/facedetect/sample && vim main.cpp
稍微改动下源码提供的测试用例
#include <iostream>
#include <opencv2/opencv.hpp>
#include <facedetection/facedetectcnn.h>
#define DETECT_BUFFER_SIZE 0x9000
using namespace cv;
using namespace std;
int main(int argc, char* argv[])
{
//param check
if(argc != 2)
{
cout << "need img" << endl;
return -1;
}
//load file
Mat image = imread(argv[1]);
if(image.empty())
{
cout << "load img fail" << endl;
return -1;
}
int * pResults = NULL;
unsigned char * pBuffer = (unsigned char *)malloc(DETECT_BUFFER_SIZE);
if(!pBuffer)
{
cout << "no buffer" << endl;
return -1;
}
//resize
cv::resize(image, image, cv::Size(200, 200));
TickMeter cvtm;
cvtm.start();
pResults = facedetect_cnn(pBuffer, (unsigned char*)(image.ptr(0)), image.cols, image.rows, (int)image.step);
cvtm.stop();
cout << "detect time : " << cvtm.getTimeMilli() << endl;
printf("%d faces detected.\n", (pResults ? *pResults : 0));
Mat result_image = image.clone();
//print the detection results
for(int i = 0; i < (pResults ? *pResults : 0); i++)
{
short * p = ((short*)(pResults + 1)) + 16*i;
int confidence = p[0];
int x = p[1];
int y = p[2];
int w = p[3];
int h = p[4];
//show the score of the face. Its range is [0-100]
char sScore[256];
snprintf(sScore, 256, "%d", confidence);
cv::putText(result_image, sScore, cv::Point(x, y-3), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 255, 0), 1);
//draw face rectangle
rectangle(result_image, Rect(x, y, w, h), Scalar(0, 255, 0), 2);
//draw five face landmarks in different colors
cv::circle(result_image, cv::Point(p[5], p[5 + 1]), 1, cv::Scalar(255, 0, 0), 2);
cv::circle(result_image, cv::Point(p[5 + 2], p[5 + 3]), 1, cv::Scalar(0, 0, 255), 2);
cv::circle(result_image, cv::Point(p[5 + 4], p[5 + 5]), 1, cv::Scalar(0, 255, 0), 2);
cv::circle(result_image, cv::Point(p[5 + 6], p[5 + 7]), 1, cv::Scalar(255, 0, 255), 2);
cv::circle(result_image, cv::Point(p[5 + 8], p[5 + 9]), 1, cv::Scalar(0, 255, 255), 2);
//print the result
printf("face %d: confidence=%d, [%d, %d, %d, %d] (%d,%d) (%d,%d) (%d,%d) (%d,%d) (%d,%d)\n",
i, confidence, x, y, w, h,
p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13],p[14]);
}
cv::imwrite("/test/detect.jpg", result_image);
//imshow("result", result_image);
//waitKey();
//release the buffer
free(pBuffer);
return 0;
}
然后编译arm-none-linux-gnueabihf-g++ -O3 main.cpp -o testface -static -std=c++11 -I/usr/local/facedetect/install/include -L/usr/local/facedetect/install/lib -lfacedetection -fopenmp $(pkg-config --cflags --libs --static opencv4)
最后将应用程序到传入运行机器,运行
获取结果
armv7l
单线程跑200*200
图片120毫秒左右,也算是差强人意吧,但是如果希望速度更快,可以参考benchmark,启用OpenMP
来达到更好的性能