AcWing—数据结构

数据结构


1.单链表(静态)

题目

实现一个单链表,链表初始为空,支持三种操作:

  1. 向链表头插入一个数;
  2. 删除第 k 个插入的数后面的数;
  3. 在第 k个插入的数后插入一个数。

现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n个数,则按照插入的时间顺序,这 n 个数依次为:第 1个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M行,每行包含一个操作命令,操作命令可能为以下几种:

  1. H x,表示向链表头插入一个数 x。
  2. D k,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。
  3. I k x,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。
输出格式

共一行,将整个链表从头到尾输出。

#include<iostream>
using namespace std;
const int N=100001;
int head,e[N],ne[N],idx;

void init(){//初始化
    head=-1;
    idx=0;
}

void insert_head(int a){
    //头插法
    e[idx]=a;//
    ne[idx]=head;//head是现在链表头的元素的位置,和头结点有区别,类似于首元结点
    head=idx;//把新插入的元素的idx作为head
    idx++;
}

//把a插入到k后面
void insert(int k,int a){
    e[idx]=a;
    ne[idx]=ne[k];
    ne[k]=idx;
    idx++;
}

//把下标为k的后面的点删掉
void remove(int k){
    ne[k]=ne[ne[k]];
}

int main(){
    init();
    int m;
    cin>>m;
    while (m -- ){
        int k,x;
        char op;
        cin>>op;
        if(op=='H'){
            cin>>x;
            insert_head(x);
        }
        if(op=='D'){
            cin>>k;
            if(k==0) head=ne[head];
            else remove(k-1);
        }
        if(op=='I'){
            cin>>k>>x;
            insert(k-1,x);
        }
    }
    
    for(int i=head; i!=-1;i=ne[i]) cout<<e[i]<<" ";
    return 0;
}

2.双链表(静态)

实现一个双链表,双链表初始为空,支持 5 种操作:

  1. 在最左侧插入一个数;
  2. 在最右侧插入一个数;
  3. 将第 k 个插入的数删除;
  4. 在第 k 个插入的数左侧插入一个数;
  5. 在第 k 个插入的数右侧插入一个数

现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。

注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:

  1. L x,表示在链表的最左端插入数 x。
  2. R x,表示在链表的最右端插入数 x。
  3. D k,表示将第 k 个插入的数删除。
  4. IL k x,表示在第 k 个插入的数左侧插入一个数。
  5. IR k x,表示在第 k 个插入的数右侧插入一个数。
输出格式

共一行,将整个链表从左到右输出。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N=100001;
int e[N],l[N],r[N],idx;

void init(){//初始化
    r[0]=1,l[1]=0;  //用0和1表示最左边和最右边的点,idx=2表明已经用了2个点(0和1)。
    idx=2;
}

void add(int k,int x){//在k右边插入一个点
    e[idx]=x;
    l[idx]=k;
    r[idx]=r[k];
    l[r[k]]=idx; //l[r[k]]=idx 必须在 r[k]=idx前面
    r[k]=idx;
    idx++;
}

void remove(int k){//删除k节点
    r[l[k]]=r[k];
    l[r[k]]=l[k];
}

int main(){
    init();
    int m;
    cin>>m;
    while(m--){
        string op;
        int x;
        int k;
        cin>>op;
        if(op=="L"){
            cin>>x;
            add(0,x);
        }
        else if(op=="R"){
            cin>>x;
            add(l[1],x);
        }
        else if(op=="D"){
            cin>>k;
            remove(k+1);
        }
        else if(op=="IL"){
            cin>>k>>x;
            add(l[k+1],x);
        }
        else if(op=="IR"){
            cin>>k>>x;
            add(k+1,x);
        }
    }
    for(int i=r[0];i!=1;i=r[i]) cout<<e[i]<<" ";
    return 0;
}

3. 栈

实现一个栈,栈初始为空,支持四种操作:

  1. push x – 向栈顶插入一个数 x;
  2. pop – 从栈顶弹出一个数;
  3. empty – 判断栈是否为空;
  4. query – 查询栈顶元素。

现在要对栈进行 M 个操作,其中的每个操作 3 和操作 4 都要输出相应的结果。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令为 push xpopemptyquery 中的一种。

输出格式

对于每个 emptyquery 操作都要输出一个查询结果,每个结果占一行。

其中,empty 操作的查询结果为 YESNOquery 操作的查询结果为一个整数,表示栈顶元素的值。

#include<iostream>
#include<cstring>
using namespace std;
const int N=100001;
// tt表示栈顶
int stk[N], tt = 0;

// 向栈顶插入一个数
void push(int x){
    stk[++tt]=x;
}

// 从栈顶弹出一个数
void pop(){
    tt -- ;
}

void query(){
    cout<<stk[tt]<<endl;
}

void empty(){
    if(tt>0) cout<<"NO"<<endl;
    else cout<<"YES"<<endl;
}

int main(){
    int m,x;
    string op;
    cin>>m;
    while(m--){
        cin>>op;
        if(op=="push"){
            cin>>x;
            push(x);
        }
        if(op=="pop"){
            pop();
        }
        if(op=="empty"){
            empty();
        }
        if(op=="query"){
            query();
        }
    }
    return 0;
}

4.队列

实现一个队列,队列初始为空,支持四种操作:

  1. push x – 向队尾插入一个数 x;
  2. pop – 从队头弹出一个数;
  3. empty – 判断队列是否为空;
  4. query – 查询队头元素。

现在要对队列进行 M 个操作,其中的每个操作 3 和操作 4 都要输出相应的结果。

输入格式

第一行包含整数 M,表示操作次数。

接下来 M 行,每行包含一个操作命令,操作命令为 push xpopemptyquery 中的一种。

输出格式

对于每个 emptyquery 操作都要输出一个查询结果,每个结果占一行。

其中,empty 操作的查询结果为 YESNOquery 操作的查询结果为一个整数,表示队头元素的值。

#include<iostream>
#include<cstring>
using namespace std;

const int N=100001;

int q[N],hh,tt;

void init(){
    hh=0,tt=0;
}

void push(int x){
    q[tt++]=x;
}

void empty(){
    if(hh<tt) cout<<"NO"<<endl;
    else cout<<"YES"<<endl;
}

void pop(){
    hh++;
}

void query(){
    cout<<q[hh]<<endl;
}

int main(){
    init();
    int m;
    cin>>m;
    while(m--){
        string op;
        int x;
        cin>>op;
        if(op=="push"){
            cin>>x;
            push(x);
        }
        if(op=="pop"){
            pop();
        }
        if(op=="query"){
            query();
        }
        if(op=="empty"){
            empty();
        }
    }
    return 0;
}

5. 单调栈

给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。

输入格式

第一行包含整数 N,表示数列长度。

第二行包含 N 个整数,表示整数数列。

输出格式

共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。

纯暴力是两重循环,这个相当于在每次保留了一个栈顶。

#include<iostream>
using namespace std;
const int N=100001;
int stk[N],tt=0;

int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        int x;
        cin>>x;
        while(tt && stk[tt]>=x) tt--;
        if(tt) cout<<stk[tt]<<" ";
        else cout<<-1<<" ";
        
        stk[++tt]=x;
    }
}

6. 单调队列 -滑动窗口

给定一个大小为 n≤ 1 0 6 10^6 106的数组。

有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。

你只能在窗口中看到 k 个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为 [1 3 -1 -3 5 3 6 7],k 为 3。

窗口位置最小值最大值
[1 3 -1] -3 5 3 6 7-13
1 [3 -1 -3] 5 3 6 7-33
1 3 [-1 -3 5] 3 6 7-35
1 3 -1 [-3 5 3] 6 7-35
1 3 -1 -3 [5 3 6] 736
1 3 -1 -3 5 [3 6 7]37

你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式

输入包含两行。

第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。

第二行有 n 个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

  • y总实现的队列初始让 t t = − 1 tt=-1 tt=1了,感觉很不习惯,自己改成了 t t = 0 tt=0 tt=0
#include<iostream>
using namespace std;
const int N=1000001;

int a[N],q[N];


int main(){
    int n,k;
    cin>>n>>k;
    for(int i=0;i<n;i++) cin>>a[i];
    
    int hh=0,tt=0;
    
    for(int i=0;i<n;i++){
        //判断队头是否已经滑出窗口
        //i-k+1是滑动窗口最左边的下标,
        //而q[hh]就是模拟的队列的队头,存的是窗口最左边的下标、
        //i-k+1> q[hh] 说明窗口该滑动了
        if(hh<tt &&i-k+1> q[hh]) hh++;
        
        while(hh<tt && a[q[tt-1]]>=a[i]) tt--;
        
        q[tt++]=i; //把坐标i的值赋给q数组
        if(i>=k-1) cout<<a[q[hh]]<<" "; //c从第k-1个数开始输出,完整的窗口
    }
    cout<<endl;
    hh=0,tt=0;
    for(int i=0;i<n;i++){
        
        if(hh<tt &&i-k+1> q[hh]) hh++;
        
        while(hh<tt && a[q[tt-1]]<=a[i]) tt--;
        
        q[tt++]=i; //把坐标i的值赋给q数组
        if(i>=k-1) cout<<a[q[hh]]<<" "; //c从第k-1个数开始输出,完整的窗口
    }
    
    return 0;
}

7. KMP nb

给定一个字符串 S,以及一个模式串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。

模式串 P 在字符串 S 中多次作为子串出现。

求出模式串 P 在字符串 S 中所有出现的位置的起始下标。

输入格式

第一行输入整数 N,表示字符串 P 的长度。

第二行输入字符串 P。

第三行输入整数 M,表示字符串 S 的长度。

第四行输入字符串 S。

输出格式

共一行,输出所有出现位置的起始下标(下标从 0 开始计数),整数之间用空格隔开。

数据范围

1 ≤ N ≤ 1 0 5 1≤N≤10^5 1N105
1 ≤ M ≤ 1 0 6 1≤M≤10^6 1M106

#include<iostream>
using namespace std;
const int N=100001,M=1000001;

char p[N],s[M];
int ne[N];

int main(){
    int n,m;
    
    cin>>n>>p+1>>m>>s+1;
    
    //求next[]
    for(int i=2,j=0;i<=n;i++)//因为是从下标1开始输入,要<=n
    {
        while(j && p[i]!=p[j+1]) j=ne[j]; //无法匹配,就继续往后退
        
        if(p[i] == p[j+1]) j++;//p[i]和p[j+1]匹配,j++,继续
        
        ne[i]=j;
    }
    
    for(int i=1,j=0; i<=m; i++){
        while(j && s[i]!=p[j+1]) j=ne[j];
        if(s[i]==p[j+1]) j++;
        
        if(j==n){
            cout<<i-n<<" ";
            j=ne[j];
        }
    }
    return 0;
}

8. Tire字符串统计

维护一个字符串集合,支持两种操作:

  1. I x 向集合中插入一个字符串 x;
  2. Q x 询问一个字符串在集合中出现了多少次。

共有 N 个操作,所有输入的字符串总长度不超过 1 0 5 10^5 105,字符串仅包含小写英文字母。

输入格式

第一行包含整数 N,表示操作数。

接下来 N 行,每行包含一个操作指令,指令为 I xQ x 中的一种。

输出格式

对于每个询问指令 Q x,都要输出一个整数作为结果,表示 x 在集合中出现的次数。

每个结果占一行。

数据范围

1 ≤ N ≤ 2 ∗ 1 0 4 1≤N≤2*10^4 1N2104

#include<iostream>
using namespace std;
const int N=100001;

int son[N][26];
int cnt[N];
int idx;

char str[N];

void insert(char str[]){
    int p=0;
    for(int i=0;str[i];i++){
        int u=str[i]-'a';
        if(!son[p][u]) son[p][u]=++idx;
        p=son[p][u];
    } 
    cnt[p]++;
}

int query(char str[]){
    int p=0;
    for(int i=0; str[i]; i++){
        int u=str[i]-'a';
        if(!son[p][u]) return 0;
        p=son[p][u];
    }
    return cnt[p];
}

int main(){
    int n;
    cin>>n;
    while(n--){
        char op;
        cin>>op>>str;
        if(op=='I') insert(str);
        if(op=='Q') cout<<query(str)<<endl;
    }
    return 0;
}

9. 并查集

模板

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。

现在要进行 m 个操作,操作共有两种:

  1. M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 M a bQ a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

#include<iostream>
using namespace std;

const int N= 100001;

int p[N];

int find(int x){ //返回x的祖宗节点加 路径压缩。
    if(p[x]!=x) p[x]=find(p[x]);
    
    return p[x];
}

int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) p[i]=i;//i的父亲节点初始化为自己的值
    
    while(m--){
        char op;
        int a,b;
        cin>>op>>a>>b;
        if(op=='M'){
            p[find(a)]=find(b);
        }
        else if(op=='Q'){
            if(find(a)==find(b)) cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
    }
    
    return 0;
}

连通块中点的数量

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;
输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a bQ1 a bQ2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

#include<iostream>
#include<cstring>
using namespace std;

const int N= 100001;

int p[N],size_p[N];

int find(int x){ //返回x的祖宗节点加 路径压缩。
    if(p[x]!=x) p[x]=find(p[x]);
    
    return p[x];
}

int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        p[i]=i;
        size_p[i]=1;
    } //i的父亲节点初始化为自己的值
    
    while(m--){
        string op;
        int a,b;
        cin>>op;
        if(op=="C"){
            cin>>a>>b;
            if(find(a)==find(b)) continue;
            
            size_p[find(b)]+=size_p[find(a)];
            p[find(a)]=find(b);
        }
        else if(op=="Q1"){
            cin>>a>>b;
            if(find(a)==find(b)) cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
        else if(op=="Q2"){
            cin>>a;
            cout<<size_p[find(a)]<<endl;
        }
    }
    
    return 0;
}

10. 堆(非STL)

堆排序

输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。

输入格式

第一行包含整数 n 和 m。

第二行包含 n 个整数,表示整数数列。

输出格式

共一行,包含 m 个整数,表示整数数列中前 m 小的数。

数据范围

1 ≤ m ≤ n ≤ 1 0 5 1≤m≤n≤10^5 1mn105
1 ≤ 数 列 中 元 素 ≤ 1 0 9 1≤数列中元素≤10^9 1109

#include<iostream>
#include<algorithm>

using namespace std;
const int N=100001;

int h[N],size_h;

void down(int u){
    int t=u;
    if(u*2<=size_h && h[u*2]<h[t]) t=u*2; //左节点存在且小于h[t]
    if(u*2+1<=size_h &&h[u*2+1]<h[t]) t=u*2+1; //右节点存在且小于h[t]
    if(u!=t){
        swap(h[u],h[t]);
        down(t);
    }
}

int main(){
    int m,n;
    cin>>n>>m;
    
    for(int i=1;i<=n;i++) cin>>h[i];
    size_h=n;
     
    for(int i=n/2;i ;i--) down(i);
    
    while(m--){
        cout<<h[1]<<" ";
        h[1]=h[size_h];
        size_h--;
        down(1);
    }
    return 0;
}

模拟堆

维护一个集合,初始时集合为空,支持如下几种操作:

  1. I x,插入一个数 x;
  2. PM,输出当前集合中的最小值;
  3. DM,删除当前集合中的最小值(数据保证此时的最小值唯一);
  4. D k,删除第 k 个插入的数;
  5. C k x,修改第 k 个插入的数,将其变为 x;

现在要进行 N 次操作,对于所有第 2 个操作,输出当前集合的最小值。

输入格式

第一行包含整数 N。

接下来 N 行,每行包含一个操作指令,操作指令为 I xPMDMD kC k x 中的一种。

输出格式

对于每个输出指令 PM,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;
const int N=100001;

int h[N],ph[N],hp[N],size_h;

void heap_swap(int a, int b){
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a],hp[b]);
    swap(h[a],h[b]);
}

void down(int u){
    int t=u;
    if(u*2<=size_h && h[u*2]<h[t]) t=u*2; //左节点存在且小于h[t]
    if(u*2+1<=size_h &&h[u*2+1]<h[t]) t=u*2+1; //右节点存在且小于h[t]
    if(u!=t){
        heap_swap(u,t);
        down(t);
    }
}

void up(int u){
    while(u/2 && h[u/2]>h[u]){
        heap_swap(u/2,u);
        u/=2;
    }
}

// I x,插入一个数 x;
// PM,输出当前集合中的最小值;
// DM,删除当前集合中的最小值(数据保证此时的最小值唯一);
// D k,删除第 k 个插入的数;
// C k x,修改第 k 个插入的数,将其变为 x;

int main(){
    int n,m=0;
    cin>>n;
    while(n--){
        string op;
        int k,x;
        cin>>op;
        if(op=="I"){
            cin>>x;
            size_h++;
            m++;
            ph[m]=size_h;
            hp[size_h]=m;
            h[size_h]=x;
            up(size_h);
        }
        if(op=="PM"){
            cout<<h[1]<<endl;
        }
        if(op=="DM"){
            heap_swap(1,size_h);
            size_h--;
            down(1);
        }
        if(op=="D"){
            cin>>k;
            k=ph[k];
            heap_swap(k,size_h);
            size_h--;
            down(k),up(k);
        }
        if(op=="C"){
            cin>>k>>x;
            k=ph[k];
            h[k]=x;
            down(k),up(k);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值