数据结构
1.单链表(静态)
题目
实现一个单链表,链表初始为空,支持三种操作:
- 向链表头插入一个数;
- 删除第 k 个插入的数后面的数;
- 在第 k个插入的数后插入一个数。
现在要对该链表进行 M 次操作,进行完所有操作后,从头到尾输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n个数,则按照插入的时间顺序,这 n 个数依次为:第 1个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M行,每行包含一个操作命令,操作命令可能为以下几种:
H x
,表示向链表头插入一个数 x。D k
,表示删除第 k 个插入的数后面的数(当 k 为 0 时,表示删除头结点)。I k x
,表示在第 k 个插入的数后面插入一个数 x(此操作中 k 均大于 0)。输出格式
共一行,将整个链表从头到尾输出。
#include<iostream>
using namespace std;
const int N=100001;
int head,e[N],ne[N],idx;
void init(){//初始化
head=-1;
idx=0;
}
void insert_head(int a){
//头插法
e[idx]=a;//
ne[idx]=head;//head是现在链表头的元素的位置,和头结点有区别,类似于首元结点
head=idx;//把新插入的元素的idx作为head
idx++;
}
//把a插入到k后面
void insert(int k,int a){
e[idx]=a;
ne[idx]=ne[k];
ne[k]=idx;
idx++;
}
//把下标为k的后面的点删掉
void remove(int k){
ne[k]=ne[ne[k]];
}
int main(){
init();
int m;
cin>>m;
while (m -- ){
int k,x;
char op;
cin>>op;
if(op=='H'){
cin>>x;
insert_head(x);
}
if(op=='D'){
cin>>k;
if(k==0) head=ne[head];
else remove(k-1);
}
if(op=='I'){
cin>>k>>x;
insert(k-1,x);
}
}
for(int i=head; i!=-1;i=ne[i]) cout<<e[i]<<" ";
return 0;
}
2.双链表(静态)
实现一个双链表,双链表初始为空,支持 5 种操作:
- 在最左侧插入一个数;
- 在最右侧插入一个数;
- 将第 k 个插入的数删除;
- 在第 k 个插入的数左侧插入一个数;
- 在第 k 个插入的数右侧插入一个数
现在要对该链表进行 M 次操作,进行完所有操作后,从左到右输出整个链表。
注意:题目中第 k 个插入的数并不是指当前链表的第 k 个数。例如操作过程中一共插入了 n 个数,则按照插入的时间顺序,这 n 个数依次为:第 1 个插入的数,第 2 个插入的数,…第 n 个插入的数。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令可能为以下几种:
L x
,表示在链表的最左端插入数 x。R x
,表示在链表的最右端插入数 x。D k
,表示将第 k 个插入的数删除。IL k x
,表示在第 k 个插入的数左侧插入一个数。IR k x
,表示在第 k 个插入的数右侧插入一个数。输出格式
共一行,将整个链表从左到右输出。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=100001;
int e[N],l[N],r[N],idx;
void init(){//初始化
r[0]=1,l[1]=0; //用0和1表示最左边和最右边的点,idx=2表明已经用了2个点(0和1)。
idx=2;
}
void add(int k,int x){//在k右边插入一个点
e[idx]=x;
l[idx]=k;
r[idx]=r[k];
l[r[k]]=idx; //l[r[k]]=idx 必须在 r[k]=idx前面
r[k]=idx;
idx++;
}
void remove(int k){//删除k节点
r[l[k]]=r[k];
l[r[k]]=l[k];
}
int main(){
init();
int m;
cin>>m;
while(m--){
string op;
int x;
int k;
cin>>op;
if(op=="L"){
cin>>x;
add(0,x);
}
else if(op=="R"){
cin>>x;
add(l[1],x);
}
else if(op=="D"){
cin>>k;
remove(k+1);
}
else if(op=="IL"){
cin>>k>>x;
add(l[k+1],x);
}
else if(op=="IR"){
cin>>k>>x;
add(k+1,x);
}
}
for(int i=r[0];i!=1;i=r[i]) cout<<e[i]<<" ";
return 0;
}
3. 栈
实现一个栈,栈初始为空,支持四种操作:
push x
– 向栈顶插入一个数 x;pop
– 从栈顶弹出一个数;empty
– 判断栈是否为空;query
– 查询栈顶元素。现在要对栈进行 M 个操作,其中的每个操作 3 和操作 4 都要输出相应的结果。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令为
push x
,pop
,empty
,query
中的一种。输出格式
对于每个
empty
和query
操作都要输出一个查询结果,每个结果占一行。其中,
empty
操作的查询结果为YES
或NO
,query
操作的查询结果为一个整数,表示栈顶元素的值。
#include<iostream>
#include<cstring>
using namespace std;
const int N=100001;
// tt表示栈顶
int stk[N], tt = 0;
// 向栈顶插入一个数
void push(int x){
stk[++tt]=x;
}
// 从栈顶弹出一个数
void pop(){
tt -- ;
}
void query(){
cout<<stk[tt]<<endl;
}
void empty(){
if(tt>0) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
}
int main(){
int m,x;
string op;
cin>>m;
while(m--){
cin>>op;
if(op=="push"){
cin>>x;
push(x);
}
if(op=="pop"){
pop();
}
if(op=="empty"){
empty();
}
if(op=="query"){
query();
}
}
return 0;
}
4.队列
实现一个队列,队列初始为空,支持四种操作:
push x
– 向队尾插入一个数 x;pop
– 从队头弹出一个数;empty
– 判断队列是否为空;query
– 查询队头元素。现在要对队列进行 M 个操作,其中的每个操作 3 和操作 4 都要输出相应的结果。
输入格式
第一行包含整数 M,表示操作次数。
接下来 M 行,每行包含一个操作命令,操作命令为
push x
,pop
,empty
,query
中的一种。输出格式
对于每个
empty
和query
操作都要输出一个查询结果,每个结果占一行。其中,
empty
操作的查询结果为YES
或NO
,query
操作的查询结果为一个整数,表示队头元素的值。
#include<iostream>
#include<cstring>
using namespace std;
const int N=100001;
int q[N],hh,tt;
void init(){
hh=0,tt=0;
}
void push(int x){
q[tt++]=x;
}
void empty(){
if(hh<tt) cout<<"NO"<<endl;
else cout<<"YES"<<endl;
}
void pop(){
hh++;
}
void query(){
cout<<q[hh]<<endl;
}
int main(){
init();
int m;
cin>>m;
while(m--){
string op;
int x;
cin>>op;
if(op=="push"){
cin>>x;
push(x);
}
if(op=="pop"){
pop();
}
if(op=="query"){
query();
}
if(op=="empty"){
empty();
}
}
return 0;
}
5. 单调栈
给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。
输入格式
第一行包含整数 N,表示数列长度。
第二行包含 N 个整数,表示整数数列。
输出格式
共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。
纯暴力是两重循环,这个相当于在每次保留了一个栈顶。
#include<iostream>
using namespace std;
const int N=100001;
int stk[N],tt=0;
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
int x;
cin>>x;
while(tt && stk[tt]>=x) tt--;
if(tt) cout<<stk[tt]<<" ";
else cout<<-1<<" ";
stk[++tt]=x;
}
}
6. 单调队列 -滑动窗口
给定一个大小为 n≤ 1 0 6 10^6 106的数组。
有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k 个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为
[1 3 -1 -3 5 3 6 7]
,k 为 3。
窗口位置 最小值 最大值 [1 3 -1] -3 5 3 6 7 -1 3 1 [3 -1 -3] 5 3 6 7 -3 3 1 3 [-1 -3 5] 3 6 7 -3 5 1 3 -1 [-3 5 3] 6 7 -3 5 1 3 -1 -3 [5 3 6] 7 3 6 1 3 -1 -3 5 [3 6 7] 3 7 你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
- y总实现的队列初始让 t t = − 1 tt=-1 tt=−1了,感觉很不习惯,自己改成了 t t = 0 tt=0 tt=0
#include<iostream>
using namespace std;
const int N=1000001;
int a[N],q[N];
int main(){
int n,k;
cin>>n>>k;
for(int i=0;i<n;i++) cin>>a[i];
int hh=0,tt=0;
for(int i=0;i<n;i++){
//判断队头是否已经滑出窗口
//i-k+1是滑动窗口最左边的下标,
//而q[hh]就是模拟的队列的队头,存的是窗口最左边的下标、
//i-k+1> q[hh] 说明窗口该滑动了
if(hh<tt &&i-k+1> q[hh]) hh++;
while(hh<tt && a[q[tt-1]]>=a[i]) tt--;
q[tt++]=i; //把坐标i的值赋给q数组
if(i>=k-1) cout<<a[q[hh]]<<" "; //c从第k-1个数开始输出,完整的窗口
}
cout<<endl;
hh=0,tt=0;
for(int i=0;i<n;i++){
if(hh<tt &&i-k+1> q[hh]) hh++;
while(hh<tt && a[q[tt-1]]<=a[i]) tt--;
q[tt++]=i; //把坐标i的值赋给q数组
if(i>=k-1) cout<<a[q[hh]]<<" "; //c从第k-1个数开始输出,完整的窗口
}
return 0;
}
7. KMP nb
给定一个字符串 S,以及一个模式串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模式串 P 在字符串 S 中多次作为子串出现。
求出模式串 P 在字符串 S 中所有出现的位置的起始下标。
输入格式
第一行输入整数 N,表示字符串 P 的长度。
第二行输入字符串 P。
第三行输入整数 M,表示字符串 S 的长度。
第四行输入字符串 S。
输出格式
共一行,输出所有出现位置的起始下标(下标从 0 开始计数),整数之间用空格隔开。
数据范围
1 ≤ N ≤ 1 0 5 1≤N≤10^5 1≤N≤105
1 ≤ M ≤ 1 0 6 1≤M≤10^6 1≤M≤106
#include<iostream>
using namespace std;
const int N=100001,M=1000001;
char p[N],s[M];
int ne[N];
int main(){
int n,m;
cin>>n>>p+1>>m>>s+1;
//求next[]
for(int i=2,j=0;i<=n;i++)//因为是从下标1开始输入,要<=n
{
while(j && p[i]!=p[j+1]) j=ne[j]; //无法匹配,就继续往后退
if(p[i] == p[j+1]) j++;//p[i]和p[j+1]匹配,j++,继续
ne[i]=j;
}
for(int i=1,j=0; i<=m; i++){
while(j && s[i]!=p[j+1]) j=ne[j];
if(s[i]==p[j+1]) j++;
if(j==n){
cout<<i-n<<" ";
j=ne[j];
}
}
return 0;
}
8. Tire字符串统计
维护一个字符串集合,支持两种操作:
I x
向集合中插入一个字符串 x;Q x
询问一个字符串在集合中出现了多少次。共有 N 个操作,所有输入的字符串总长度不超过 1 0 5 10^5 105,字符串仅包含小写英文字母。
输入格式
第一行包含整数 N,表示操作数。
接下来 N 行,每行包含一个操作指令,指令为
I x
或Q x
中的一种。输出格式
对于每个询问指令
Q x
,都要输出一个整数作为结果,表示 x 在集合中出现的次数。每个结果占一行。
数据范围
1 ≤ N ≤ 2 ∗ 1 0 4 1≤N≤2*10^4 1≤N≤2∗104
#include<iostream>
using namespace std;
const int N=100001;
int son[N][26];
int cnt[N];
int idx;
char str[N];
void insert(char str[]){
int p=0;
for(int i=0;str[i];i++){
int u=str[i]-'a';
if(!son[p][u]) son[p][u]=++idx;
p=son[p][u];
}
cnt[p]++;
}
int query(char str[]){
int p=0;
for(int i=0; str[i]; i++){
int u=str[i]-'a';
if(!son[p][u]) return 0;
p=son[p][u];
}
return cnt[p];
}
int main(){
int n;
cin>>n;
while(n--){
char op;
cin>>op>>str;
if(op=='I') insert(str);
if(op=='Q') cout<<query(str)<<endl;
}
return 0;
}
9. 并查集
模板
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m 个操作,操作共有两种:
M a b
,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;Q a b
,询问编号为 a 和 b 的两个数是否在同一个集合中;输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为
M a b
或Q a b
中的一种。输出格式
对于每个询问指令
Q a b
,都要输出一个结果,如果 a 和 b 在同一集合内,则输出Yes
,否则输出No
。每个结果占一行。
#include<iostream>
using namespace std;
const int N= 100001;
int p[N];
int find(int x){ //返回x的祖宗节点加 路径压缩。
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++) p[i]=i;//i的父亲节点初始化为自己的值
while(m--){
char op;
int a,b;
cin>>op>>a>>b;
if(op=='M'){
p[find(a)]=find(b);
}
else if(op=='Q'){
if(find(a)==find(b)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}
return 0;
}
连通块中点的数量
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为
C a b
,Q1 a b
或Q2 a
中的一种。输出格式
对于每个询问指令
Q1 a b
,如果 a 和 b 在同一个连通块中,则输出Yes
,否则输出No
。对于每个询问指令
Q2 a
,输出一个整数表示点 a 所在连通块中点的数量每个结果占一行。
#include<iostream>
#include<cstring>
using namespace std;
const int N= 100001;
int p[N],size_p[N];
int find(int x){ //返回x的祖宗节点加 路径压缩。
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
p[i]=i;
size_p[i]=1;
} //i的父亲节点初始化为自己的值
while(m--){
string op;
int a,b;
cin>>op;
if(op=="C"){
cin>>a>>b;
if(find(a)==find(b)) continue;
size_p[find(b)]+=size_p[find(a)];
p[find(a)]=find(b);
}
else if(op=="Q1"){
cin>>a>>b;
if(find(a)==find(b)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
else if(op=="Q2"){
cin>>a;
cout<<size_p[find(a)]<<endl;
}
}
return 0;
}
10. 堆(非STL)
堆排序
输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。
输入格式
第一行包含整数 n 和 m。
第二行包含 n 个整数,表示整数数列。
输出格式
共一行,包含 m 个整数,表示整数数列中前 m 小的数。
数据范围
1 ≤ m ≤ n ≤ 1 0 5 1≤m≤n≤10^5 1≤m≤n≤105
1 ≤ 数 列 中 元 素 ≤ 1 0 9 1≤数列中元素≤10^9 1≤数列中元素≤109
#include<iostream>
#include<algorithm>
using namespace std;
const int N=100001;
int h[N],size_h;
void down(int u){
int t=u;
if(u*2<=size_h && h[u*2]<h[t]) t=u*2; //左节点存在且小于h[t]
if(u*2+1<=size_h &&h[u*2+1]<h[t]) t=u*2+1; //右节点存在且小于h[t]
if(u!=t){
swap(h[u],h[t]);
down(t);
}
}
int main(){
int m,n;
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>h[i];
size_h=n;
for(int i=n/2;i ;i--) down(i);
while(m--){
cout<<h[1]<<" ";
h[1]=h[size_h];
size_h--;
down(1);
}
return 0;
}
模拟堆
维护一个集合,初始时集合为空,支持如下几种操作:
I x
,插入一个数 x;PM
,输出当前集合中的最小值;DM
,删除当前集合中的最小值(数据保证此时的最小值唯一);D k
,删除第 k 个插入的数;C k x
,修改第 k 个插入的数,将其变为 x;现在要进行 N 次操作,对于所有第 2 个操作,输出当前集合的最小值。
输入格式
第一行包含整数 N。
接下来 N 行,每行包含一个操作指令,操作指令为
I x
,PM
,DM
,D k
或C k x
中的一种。输出格式
对于每个输出指令
PM
,输出一个结果,表示当前集合中的最小值。每个结果占一行。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=100001;
int h[N],ph[N],hp[N],size_h;
void heap_swap(int a, int b){
swap(ph[hp[a]],ph[hp[b]]);
swap(hp[a],hp[b]);
swap(h[a],h[b]);
}
void down(int u){
int t=u;
if(u*2<=size_h && h[u*2]<h[t]) t=u*2; //左节点存在且小于h[t]
if(u*2+1<=size_h &&h[u*2+1]<h[t]) t=u*2+1; //右节点存在且小于h[t]
if(u!=t){
heap_swap(u,t);
down(t);
}
}
void up(int u){
while(u/2 && h[u/2]>h[u]){
heap_swap(u/2,u);
u/=2;
}
}
// I x,插入一个数 x;
// PM,输出当前集合中的最小值;
// DM,删除当前集合中的最小值(数据保证此时的最小值唯一);
// D k,删除第 k 个插入的数;
// C k x,修改第 k 个插入的数,将其变为 x;
int main(){
int n,m=0;
cin>>n;
while(n--){
string op;
int k,x;
cin>>op;
if(op=="I"){
cin>>x;
size_h++;
m++;
ph[m]=size_h;
hp[size_h]=m;
h[size_h]=x;
up(size_h);
}
if(op=="PM"){
cout<<h[1]<<endl;
}
if(op=="DM"){
heap_swap(1,size_h);
size_h--;
down(1);
}
if(op=="D"){
cin>>k;
k=ph[k];
heap_swap(k,size_h);
size_h--;
down(k),up(k);
}
if(op=="C"){
cin>>k>>x;
k=ph[k];
h[k]=x;
down(k),up(k);
}
}
return 0;
}