关于 回文数和进制的问题

题目描述

若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。

例如:给定一个十进制数 5656,将 5656 加 6565(即把 5656 从右向左读),得到 121121 是一个回文数。

又如:对于十进制数 8787:

STEP1:87+78=16587+78=165
STEP2:165+561=726165+561=726
STEP3:726+627=1353726+627=1353
STEP4:1353+3531=48841353+3531=4884

在这里的一步是指进行了一次 NN 进制的加法,上例最少用了 44 步得到回文数 48844884。

写一个程序,给定一个 NN(2 \le N \le 102≤N≤10 或 N=16N=16)进制数 MM(100100 位之内),求最少经过几步可以得到回文数。如果在 3030 步以内(包含 3030 步)不可能得到回文数,则输出 Impossible!

输入格式

两行,分别是 NN,MM。

输出格式

如果能在 3030 步以内得到回文数,输出格式形如 STEP=ans,其中 \text{ans}ans 为最少得到回文数的步数。

否则输出 Impossible!

输入输出样例

输入一:

10
87

输出一:

STEP=4

废话不多说上代码

#include <bits/stdc++.h> 
using namespace std;
int n, q[1000001], l, w[1000001], ans;
string s;
void init() 
{
	int j = 0;
	for(int i = s.length() - 1; i >= 0 ; i--) 
	{
		if(s[i] >= '0' && s[i] <= '9') 
		{
			q[++j] = s[i] - '0';
		}
		else 
		{
			q[++j] = s[i] - 'A' + 10;
		} 
	}
}
void add(int a[], int b[]) 
{
	for(int i = 1; i <= l; i++)
	{
		a[i] += b[i];
		a[i + 1] += a[i] / n; 
		a[i] %= n;
	}
	if(a[l + 1] > 0) 
	{
		l++; 
	}
}
bool f(int a[]) 
{
	int ln = l;
	int i = 1;
	int j = l;
	while(ln--)
	{
		if(ln < l / 2) 
		{
			break;
		}
		if(a[i] != a[j])
		{
			return false; 
		}
		i++;
		j--;
	}
	return true;
}
void turn(int a[]) 
{
	int j = 0;
	for(int i = l; i >= 1; i--) 
	{
		w[++j] = a[i]; 
	}
}
int main()
{
	cin>>n>>s;
	init(); 
	l = s.length();
	while(!f(q)) 
	{
		turn(q);
		add(q, w); 
		ans++;
		if(ans > 30) 
		{
			break;
		}
	}
	if(ans > 30)
	{
		printf("Impossible!"); 
	}
	else
	{
		printf("STEP=%d", ans);
	}
	return 0;
}

非常感谢洛谷网站,此题出自洛谷网站,题号为:P1015

洛谷网站网址:首页 - 洛谷洛谷创办于2013年,致力于为参加noip、noi、acm的选手提供清爽、快捷的编程体验。它拥有在线测题系统、强大的社区、在线学习功能。很多教程内容由各位oiers提供的,内容广泛。无论是初学oi的蒟蒻,还是久经沙场的神犇,均可从中获益,也可以帮助他人,共同进步。是学习noip等竞赛时理想的网站。https://www.luogu.com.cn/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值