
数据分析
文章平均质量分 71
atbigapp.com
www.atbigapp.com,专业开发者合作平台。
展开
-
快手电商:数据指标体系与指标平台建设实践
•在面对业务指标一致性问题时,首先需要在需求拆解和指标定义阶段树立主动的规范意识和一致性目标,形成如指标命名规范等公共规范,以确保指标的标准化和清晰度。•指标定义和维护过程中,需基于已有指标进行管理,明确指标的归属和词库,通过规范化的新增流程来避免新旧指标口径不一致,同时利用审批流程和血缘关系监控来及时发现并解决同名不同义的问题。•在数据的生产环节,遵循严格的生产规范,对新增指标进行审批,并利用数据血缘关系进行监控,及时发现并处理指标不一致性问题,提升数据的一致性和准确性。原创 2025-05-21 14:23:52 · 466 阅读 · 0 评论 -
数据报告神器!数据分析师的加班终结者!
每个职场人或许都经历过被数据报告紧紧“捆绑”的恐惧:面对堆积如山的Excel表格,既要熬更守夜地整理数据、精心制作图表,又要苦思冥想报告的逻辑框架,甚至在排版上反复打磨直至心力交瘁。而数据工坊支持精准调校功能,无论是单个图表的配色、文字描述,还是整体报告的逻辑结构,都能随时进行修改,真正实现“哪里不满意改哪里”。基于分析大纲,数据工坊会自动匹配最合适的图表类型(如柱状图、折线图、饼图图等),并搭配逻辑严谨的文字描述,生成一份完整的数据分析报告。一键即可生成大纲、图表、文字,专业报告轻松可得。原创 2025-05-14 11:19:10 · 434 阅读 · 0 评论 -
为什么要做数据分析?一文详解5大数据分析方法
数据分析在现代商业中扮演着至关重要的角色,它帮助企业基于事实和数据做出科学决策,提升运营效率,增强竞争力,并推动创新发展。文章从数据分析的四大价值出发,详细解析了其底层逻辑,并介绍了五种常用的数据分析方法:描述性分析、相关性分析、回归分析、聚类分析和分类分析。这些方法能够帮助企业从海量数据中挖掘出有价值的信息,转化为可落地的决策。此外,文章还通过销售数据、客户数据和财务数据的分析场景,展示了数据分析如何具体应用于业务中,帮助企业优化策略,提升业绩。在全球数据驱动的商业环境下,掌握数据分析技能已成为个人和企业原创 2025-05-13 16:26:20 · 987 阅读 · 0 评论 -
从Excel到数据报告一步到位,这个AI绝了
数据工坊是一款零门槛智能数据分析工具,用户上传Excel/CSV文件即可自动生成含可视化图表和专业解读的完整报告,支持PDF导出。相比传统大模型需反复对话或手动排版,它通过端到端AI处理实现一键生成,覆盖职场周报、电商分析、学术调研等场景,显著提升效率。核心功能包括自动构建分析维度、分钟级报告生成及细节精准调校。原创 2025-05-13 15:31:44 · 673 阅读 · 0 评论 -
再也不吃写数据报告的苦了!让ai来吧!
数据分析职场打工人再也不吃做数据报告的苦了!用只需要几分钟就可以出一个包含图表+分析洞察的数据分析报告了。原创 2025-05-09 10:23:54 · 160 阅读 · 0 评论 -
消费者洞察分析怎么做?以亚马逊用户调研为例
在数字化时代,“消费者是谁”这个看似简单的问题,却成了企业最大的挑战之一。拿老李常用的数据分析工具FineBI来说,它支持直连亚马逊后台数据库、Excel、爬虫数据接口,无需手动导出,利用它强大的数据清洗功能,还能快速识别并剔除重复、错误的数据,让数据变得干净、整齐,整合多维且分散的数据后就能形成完整的用户画像了。下面就是根据消费者洞察分析思路,结合FineBI丰富多样的可视化组件,比如饼图、柱形图、词云图以及矩形树图等,展示出消费者的性别比例、年龄分布、购买偏好等数据,搭建数据看板,进行了可视化分析。原创 2025-05-06 16:11:26 · 786 阅读 · 0 评论 -
如何让Ai生成数据分析报告?图文教程
巨人肩膀团队将将保持快速迭代,只为更好的帮大家完成分析,无论是用户提出的优化建议,还是更利于用户的隐藏需求,我们都将快速响应。快使用数据工坊一起开启智能分析时代!!!原创 2025-05-06 15:10:37 · 687 阅读 · 0 评论 -
16种竞品分析方法,数据产品经理必备
需要通过功能拆解可以更深入、更全面地了解竞品的功能的方法,在学习借鉴竞品的功能时,要估算开发成本以及开发周期,如果没有进行功能拆解而仅凭感觉估算,会导致偏差太大而做出错误的决策,功能拆解可以为下一步的探索需求做准备,进而更深入地了解竞品解决的问题、满足的需求,然后构建更好的解决方案。表格分析法的一种升级,也有叫 YES/NO 分析法,也是统计竞品功能元素的有无,主要适用于功能层面,简单来说就是将各个产品的功能点全盘罗列出,有功能点的地方标 "√",通过比对可以清晰地了解功能点上产品间的异同。原创 2025-04-25 10:24:21 · 747 阅读 · 0 评论 -
全流程讲解完整数据分析
管理大师德鲁克说:“不能衡量,就无法管理。产品经理完拍脑袋、凭感觉、凭经验做决策的时代已经过去了。如果你还没有数据思维或者数据分析相关的能力,被时代淘汰真的是,早晚的事!产品经理不需要成为数据分析方面的专家,但什么时候分析数据、分析哪些数据、如何分析数据、如何用数据辅助决策、如何用数据驱动业务,这些问题是产品经理必须要回答的。数据分析的框架我以支付业务为例来讲解。原创 2025-04-25 09:16:56 · 817 阅读 · 0 评论 -
数据分析不只是跑个SQL!
数据分析的本质是抓住变与不变。"变"是数据分析的基础——如果一个业务每天订单都是10000单,或者每天都以10%的速度稳步增长,那就没有分析的必要了。要抓住"变",必须先建立"不变"的基线意识:•养成每天查看数据的习惯•记录关键指标的基准值•通过日环比、周月同比监控培养指标敏感性•保持对业务异常的好奇心。原创 2025-04-24 15:34:54 · 676 阅读 · 0 评论 -
10种数据分析的模型思维让你“灵光一闪”
很多人都说会数据分析的人比别人聪明,实际上他们“聪明”在拥有模型化的分析思维,今天我们就来说说常见的数据分析思维。以下10种数据分析思维可能不会瞬间升级你的思维模式,但说不定会为你以后的工作带来“灵光一闪”的感觉,请耐心读完,灵光一闪的时候别忘了我。原创 2025-04-24 15:05:53 · 867 阅读 · 0 评论 -
提示词应用:IT模拟面试
抓住“金三银四”求职季的小尾巴,专业且充分的面试准备显得尤为重要。本文将详细且系统地介绍如何巧妙运用提示词技术,开展高效且有针对性的IT岗位模拟面试训练。这一训练方案具备三大核心价值,助力求职者在竞争激烈的IT职场中脱颖而出:1.:通过模拟面试,能够迅速发现自身专业知识中的盲点,从而在正式面试前及时查漏补缺,完善知识体系。2.:模拟面试过程有助于培养流畅自如的表达能力和条理清晰的逻辑思维,使求职者在面对面试官时更加从容不迫。3.原创 2025-03-28 16:29:01 · 814 阅读 · 0 评论 -
AI数据分析:一键生成数据分析报告
假设你是一家新零售企业的销售分析师,有一份销售数据,数据结构如数据结构包括:日期、会员id,门店编号、城市、渠道、商品id、商品类别、销售金额、销量、客单价、等基础字段。未来的赢家是“双核驱动型”人才——既能用AI提效,又能用业务与批判性思维创造不可替代的价值。作为一名数据分析师,我们经常需要做一些数据分析报告,今天我就来手把手教你如何使用大模型一键生成高质量的数据分析报告,提高你的工作效率。小贴士:小编实测,先用AI帮我们生成数据分析维度再用这个数据分析维度生成可视化报告会比直接生成数据分析报告更全面。原创 2025-03-26 16:40:11 · 1190 阅读 · 0 评论 -
AI数据分析:一键生成数据分析维度
大模型不仅能够帮助数据分析师高效地识别出数据中的关键特征,还能根据业务需求生成最适合的分析维度,大大提升了数据分析的效率和精准度,减轻了数据分析师的工作负担。原创 2025-03-25 14:03:55 · 600 阅读 · 0 评论 -
AI数据分析:一键生成可视化分析思路
在数据量庞大、信息杂乱的情况下,DeepSeek 能够帮助分析师快速理清思路,生成清晰的分析框架,并将复杂的分析过程简化为“拖拉拽”操作,整个过程简单高效,即使是数据分析新手也能轻松上手。原创 2025-03-08 09:00:00 · 656 阅读 · 0 评论 -
AI时代,数据分析师如何破局?
I不会取代数据分析师,但会重新定义这一角色。 未来的赢家是“双核驱动型”人才——既能用AI提效,又能用业务与批判性思维创造不可替代的价值。无论是资深者还是新人,都需终身学习。技术上跟进AI工具迭代,业务上深入理解行业痛点,方能在人机协同的时代持续领先。原创 2025-03-07 11:31:17 · 1032 阅读 · 0 评论 -
如何搭建数据指标体系(下)
如何应用和管理数据指标体系原创 2025-03-04 11:49:23 · 858 阅读 · 0 评论 -
AI数据分析:deepseek生成SQL
在当今数据驱动的时代,数据分析已成为企业和个人决策的重要工具。随着人工智能技术的快速发展,AI 驱动的数据分析工具正在改变我们处理和分析数据的方式。本文将着重介绍如何使用 DeepSeek 进行自动补全SQL 查询语句。我们都知道,SQL 查询语句是每个数据分析师的必修课,今天就教大家如果使用DeepSeek自动补全SQL.以下是一个使用 DeepSeek 自动补全SQL 的实际案例。原创 2025-03-03 16:54:51 · 3248 阅读 · 1 评论 -
如何搭建数据指标体系(上)
在产品和运营的工作中,我们会接触不同的数据、不同的指标。很多时候我们做的数据,都是针对单个点的层面去做,而最终显示出来的数据往往比较零散,无法串联起来,发现全局的问题。而指标体系化,则是将零散的数据串联起来,让你通过单点看到全局,通过全局解决单点的问题。体系化的指标和零散的指标,最大的区别是——是否能更加快速地发现一些问题。用一个词来形容,就是“引一发而动全身”,通过相关的指标变化看到整体业务场景下的变化,从而快速发现问题或者是监控相应运营策略的效果情况。原创 2025-02-27 13:50:43 · 1011 阅读 · 0 评论 -
AI数据分析:用DeepSeek做数据清洗
借助PromptIDE+deepseek进行数据分析原创 2025-02-27 12:47:07 · 4162 阅读 · 0 评论 -
深度剖析数据分析职业成长阶梯
深度剖析数据分析职业成长阶梯原创 2025-02-26 16:06:02 · 1756 阅读 · 0 评论 -
数据分析七大步骤
七大步骤,打开数据分析思路原创 2025-02-25 09:41:52 · 951 阅读 · 0 评论 -
看图学sql之sql 中的UNION 和union all
看图学sql之sql 中的UNION 和union all原创 2024-08-22 18:58:32 · 466 阅读 · 0 评论 -
看图学sql之sql中的子查询
看图学sql之sql中的子查询原创 2024-08-23 12:02:08 · 423 阅读 · 0 评论 -
看图学sql之sql 中的窗口函数
看图学sql之sql 中的窗口函数原创 2024-08-16 16:30:48 · 496 阅读 · 0 评论 -
看图学sql之sql 中的常用函数
看图学sql之sql 中的常用函数原创 2024-08-07 16:25:08 · 385 阅读 · 0 评论 -
看图学sql之sql的执行顺序
看图学sql之sql的执行顺序原创 2024-08-06 16:13:48 · 527 阅读 · 0 评论 -
看图学sql之sql 中的having
看图学sql之sql 中的having原创 2024-08-04 10:46:43 · 529 阅读 · 0 评论 -
sql 中的group by 与 聚合函数
sql 中的group by 与 聚合函数原创 2024-08-03 20:34:34 · 568 阅读 · 0 评论 -
看图学sql之 sql中的distinct
DISTINCT 关键字需要和 SELECT 语句一起使用,用来删除结果集中所有重复的记录,仅保留唯一的一条记录。原创 2024-08-02 09:44:51 · 416 阅读 · 0 评论 -
看图学sql之sql 中的limit
看图学sql之sql 中的limit原创 2024-08-01 10:05:29 · 246 阅读 · 0 评论 -
看图学sql之sql 中的join
看图学sql之sql 中的join原创 2024-07-31 09:34:04 · 864 阅读 · 0 评论 -
看图学sql之sql语法
sql语法及常用命令原创 2024-07-30 09:34:53 · 348 阅读 · 0 评论 -
看图学sql之sql 中的select、where、 order by
sql 中的select、where、 order by原创 2024-07-30 09:36:42 · 592 阅读 · 0 评论 -
看图学sql之sql入门
想象一下,一个抽屉就是一个小数据库,里面放满了整理好的纸质表格,数据就乖乖地躺在这些表格的行和列里啦!市面上数据库千千万,MySQL、Oracle、SQL Server等但是操作他们的语言SQL,本质都是差不多的。SQL全称Structured Query Language(结构化查询语言),是操作关系数据库的标准语言,也是我们和数据库交互的桥梁。增:在数据库中增加新的数据 删:删掉我们不需要的数据 改:在原有的数据上做修改 查:根据一些条件,查找我们需要的数据。---写在文末---sql 的主要操作?原创 2024-07-29 16:02:07 · 745 阅读 · 0 评论 -
数据分析师快速入行:知识路线详解
要想快速成为一名优秀的数据分析师,你需要系统学习并掌握以下几个核心部分的知识路线。本文将详细阐述每个部分的重要性、学习内容以及如何高效学习。原创 2024-07-18 10:36:48 · 1498 阅读 · 0 评论