AI数据分析:用DeepSeek做数据清洗

在当今数据驱动的时代,数据分析已成为企业和个人决策的重要工具。随着人工智能技术的快速发展,AI 驱动的数据分析工具正在改变我们处理和分析数据的方式。本文将着重介绍如何使用 DeepSeek 进行数据清洗。

数据清洗是数据分析的基础,其目的是确保数据的准确性、完整性和一致性。常见的数据问题包括:

  1. 缺失值:数据中的某些字段为空。

  2. 重复值:数据中存在重复记录。

  3. 异常值:数据中存在明显偏离正常范围的数值。

  4. 不一致性:数据格式或单位不统一。

如果不进行数据清洗,这些问题会导致分析结果偏差,甚至误导决策。

以下是一个使用 DeepSeek 清洗销售数据的实际案例。

假设我们有一个销售数据表

订单ID商品ID商品名销量销售额(元)
1001101商品A10500
1002102商品B5250
1003103商品C201000
1004101商品A15750
1005104商品D1005000
1006105商品E1500
1007102商品B8400
1008103商品C251250
1009106商品F00
1010101商品A12600
1011104商品D301500
1012105商品E2100
1013107商品G502500
1014108商品H20010000
1015102商品B6300
1016103商品C18900
1017109商品I00
1018101商品A9450
1019104商品D402000
1020105商品E3150
1021107商品G60
1022108商品H1507500
1023102商品B7350
1024103商品C221100
1025109商品I150
1026101商品A11550
1027104商品D351750
1028105商品E4200
1029107商品G552750
1029107商品G552750
1030108商品H1809000

接下来我们用PromptIDE-提示词开发工具帮我们生成一个数据清洗的提示词。

生成的提示词如下:


# 角色: 
数据分析与数据预处理专家

## 背景: 
用户在处理数据时遇到数据质量问题,需要对数据进行清洗以确保数据的准确性、完整性和一致性,从而为后续的数据分析或机器学习模型训练提供高质量的数据基础

## 注意:
1、数据清洗是一个复杂且耗时的过程,但它是确保数据质量的关键步骤。
2、通过有效的数据清洗,可以显著提高数据分析的准确性和可靠性。

## 技能:
1、熟悉数据清洗的常用技术和工具。
2、具备强大的数据处理和分析能力。
3、能够识别和处理数据中的异常值和缺失值。
4、能够设计和实施数据清洗流程。

## 目标:
1、识别并处理数据中的异常值。
2、填补或删除数据中的缺失值。
3、标准化数据格式,确保数据一致性。
4、去除重复数据。
5、验证数据清洗后的质量。

## 约束:
1、确保数据清洗过程不会引入新的错误。
2、遵守数据隐私和安全的相关规定。
3、在数据清洗过程中保持数据的原始结构和含义。


## 输出:
1、清洗后的数据应以结构化表格形式输出。
2、数据清洗报告,包括详细记录清洗过程、问题发现及解决方法。
3、建议的进一步数据预处理步骤。

## 工作流:
1、接收并分析用户提供的数据集和清洗规则。
2、识别数据中的异常值和缺失值。
3、根据清洗规则处理异常值和缺失值。
4、标准化数据格式,去除重复数据。
5、验证数据清洗后的质量,生成清洗报告。


## 初始化:
Initialization: 在第一次对话中,请直接输出以下:欢迎使用数据清洗服务。请提供您需要清洗的数据文件,我将按照数据隐私和安全原则,为您进行高效、透明的数据清洗。您可以上传数据文件,告诉我您关注的数据质量问题,我将为您提供专业的解决方案。

接下来我们将这个提示词发给大模型看看效果。

数据清洗报告

1. 数据问题识别

通过初步分析,发现以下数据质量问题:

  1. 重复值:订单ID为 1029 的记录出现重复。
  2. 缺失值:订单ID为 1021 的记录中,销售额(元) 缺失。
  3. 异常值
    • 销量 为 0,但 销售额(元) 也为 0(订单ID:1009 和 1017),可能是无效记录。
    • 销量 和 销售额(元) 的比例异常(例如:订单ID:1006,销量为 1,销售额为 500,可能存在输入错误)。

2. 数据清洗过程
2.1 删除重复值

删除订单ID为 1029 的重复记录。

2.2 填充缺失值

对于订单ID为 1021 的缺失值,根据商品G的平均单价进行填充:

  • 商品G的销售额 = 销量 × 单价
  • 计算商品G的平均单价:(2500 + 2750) / (50 + 60) ≈ 48.18
  • 订单ID 1021 的销售额 = 60 × 48.18 ≈ 2891 元

填充后:

订单ID商品ID商品名销量销售额(元)
1021107商品G602891
2.3 标准化异常值处理
  1. 销量为 0 的记录

    • 删除订单ID为 1009 和 1017 的记录,因为其销量和销售额均为 0,属于无效数据。
  2. 比例异常记录

    • 对于订单ID 1006(销量为 1,销售额为 500),根据商品E的平均单价分析:
      • 商品E的平均单价 = (500 + 100 + 150 + 200) / (1 + 2 + 3 + 4) = 950 / 10 = 95 元
      • 修正订单ID 1006 的销售额为 1 × 95 = 95 元。

修正后:

订单ID商品ID商品名销量销售额(元)
1006105商品E195

3. 数据清洗结果

清洗后的数据集如下:

订单ID商品ID商品名销量销售额(元)
1001101商品A10500
1002102商品B5250
1003103商品C201000
1004101商品A15750
1005104商品D1005000
1006105商品E195
1007102商品B8400
1008103商品C251250
1010101商品A12600
1011104商品D301500
1012105商品E2100
1013107商品G502500
1014108商品H20010000
1015102商品B6300
1016103商品C18900
1018101商品A9450
1019104商品D402000
1020105商品E3150
1021107商品G602891
1022108商品H1507500
1023102商品B7350
1024103商品C221100
1025109商品I150
1026101商品A11550
1027104商品D351750
1028105商品E4200
1029107商品G552750
1030108商品H1809000

4. 下一步建议
  1. 数据验证:对清洗后的数据进行统计分析,确保数据分布合理,无异常值。
  2. 特征工程:如果需要构建机器学习模型,建议进一步对数据进行特征提取和标准化。
  3. 数据监控:建议建立数据质量监控机制,定期检查数据中的异常情况。


总之,我们借助PromptIDE+deepseek就可以轻松帮我们完成数据清洗了。

### 使用 DeepSeek 进行数据清洗和数据提取 #### 数据清洗方法 在处理任何机器学习项目时,数据清洗是一个至关重要的预处理阶段。对于使用 DeepSeek 的情况而言,该平台提供了多种工具来帮助用户有效地清理数据。 - **去除重复项**:DeepSeek 支持识别并移除数据集中的冗余记录,这有助于提高后续分析的质量[^1]。 - **缺失值处理**:针对存在空缺的数据字段,可以采用填充策略(如均值/众数替换)、删除含有缺失值的条目等方式来进行修复[^2]。 - **异常检测与修正**:通过内置算法自动发现潜在错误或不合理之处,并提供直观界面让用户确认修改建议;此外还支持自定义规则设定以适应特定业务需求下的特殊情形判断逻辑[^3]。 ```python import deepseek as ds # 去重操作示例 cleaned_data = ds.remove_duplicates(raw_dataset) # 缺失值填补实例 - 此处假设为数值型特征列 'age' filled_missing_values = ds.fillna(dataset=raw_dataset, column='age', method='mean') ``` #### 数据提取技术 为了从复杂多样的原始资料源中获取有用的信息片段,在此介绍几种常见的基于 DeepSeek 平台实现高效精准抽取目标要素的技术手段: - **结构化信息解析**:当面对半结构化的 HTML 页面或是 JSON 文件等内容形式时,能够利用 XPath/CSS Selector 或者正则表达式模式匹配机制快速定位所需节点位置进而读取其内部承载的具体属性值[^4]。 - **自然语言理解 (NLU)**:借助于先进的 NLP 技术栈,包括但不限于命名实体识别(NER)、关系抽取(RE),可将非结构性文本转化为具有明确语义指向性的键值对集合,便于进一步加工应用[^5]。 - **图像 OCR 解析**:如果涉及到图形类素材,则可通过光学字符识别(OCR)服务接口调用来转换成可供计算机程序直接解读的文字描述序列[^6]。 ```python from deepseek import nlu, ocr, web_scraper # 结构化信息抓取案例 - 提取消息标题列表 titles = web_scraper.extract_titles(url="https://example.com/news") # 自然语言处理示范 - 实体标注任务 entities = nlu.recognize_entities(text="Apple is looking at buying U.K. startup for $1 billion.") # 图像文字转录样例 text_from_image = ocr.read_text(image_path="./sample.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值