在数字化时代,“消费者是谁”这个看似简单的问题,却成了企业最大的挑战之一。消费者的行为愈发碎片化,需求隐藏在海量数据背后,传统的问卷、访谈调研方法效率低、样本偏差大,难以捕捉真实需求。更棘手的是,数据来源分散,非结构化数据占比高,分析链路长,稍有不慎就可能导致许多企业陷入“有数据、无洞察”的困境。不过别慌,今天老李就结合亚马逊用户调研案例,手把手教大家如何借助数字化工具,通过对数据整合、清洗与分析,让数据“开口说话”,带大家一起看看精准的消费者洞察分析到底该怎么做。
01 业务背景
亚马逊成立于 1994 年,最初以线上书店起步,凭借创新的商业模式和强大的技术实力,迅速在全球电商领域崭露头角。然而,随着全球电商市场的日益成熟,新的竞争对手不断涌现。近年来,“shein”“temu” 等新兴跨境电商平台以独特的运营策略和快速的市场扩张,在全球范围内吸引了大量用户,尽管目前用户规模与亚马逊仍有差距,但强劲的增长势头给亚马逊带来了不小的竞争压力。在这样的竞争环境下,亚马逊持续优化自身的服务体系、丰富产品种类、提升物流配送效率以及强化用户体验,稳固自身在跨境电商市场的领先地位。
这份分析报告主要通过收集网上消费者的调研问卷数据,深入剖析亚马逊的消费者情况。从消费者的基本属性、消费偏好、购物链路等多个维度展开详细分析,全面了解消费者行为特征,同时探究消费者对亚马逊平台的优势、劣势以及特色服务功能的看法。希望通过这些分析,为亚马逊平台以及入驻的卖家提供有价值的参考建议,提升用户体验,实现平台、卖家与消费者的多方共赢。
02 消费者洞察分析思路
拿到亚马逊的网上消费者调研问卷数据后,我们确定从以下三个关键维度展开深度分析:
1、消费者基本画像和行为特征
从消费者的性格特点、年龄分布、商品偏好以及购物频次等多个角度入手,全面勾勒出亚马逊的核心消费群体轮廓,精准把握他们的消费偏好。
2、消费者购物链路
将消费者的购物过程细致地划分为购前、购中、购后三个阶段,深入剖析每个阶段的行为细节。比如,购前消费者是如何发现需求并搜索产品的;购中他们关注哪些产品指标,购物车加购转化率如何;购后他们又会有哪些行为,是否会留下评价反馈等。
3、平台服务影响因素和改进优化
从亚马逊的优势、需要改进的地方、产品推荐功能以及消费者购物体验满意度等四个方面,深入分析平台服务对消费者购物行为的影响。
03 消费者洞察分析实操
1、多源数据处理
导入收集到的亚马逊消费者调研问卷,进行数据清洗和数据处理。拿老李常用的数据分析工具FineBI来说,它支持直连亚马逊后台数据库、Excel、爬虫数据接口,无需手动导出,利用它强大的数据清洗功能,还能快速识别并剔除重复、错误的数据,让数据变得干净、整齐,整合多维且分散的数据后就能形成完整的用户画像了。
点击下方链接在浏览器中打开,就能一键get同款分析工具FineBI:https://s.fanruan.com/eehlr
2、可视化分析
下面就是根据消费者洞察分析思路,结合FineBI丰富多样的可视化组件,比如饼图、柱形图、词云图以及矩形树图等,展示出消费者的性别比例、年龄分布、购买偏好等数据,搭建数据看板,进行了可视化分析。
(1)消费者基本画像和行为特征
先给大家看一张消费者分析看板,它从男女比例、年龄分布、购买偏好和购物频次等多维度搭建消费者分析仪表盘,这张图是老李用FineBI做的,通过拖拽就能快速搭建可视化看板,系统也内置了购买分析、消费习惯分析等多种分析模板。下面解读一下这张消费者分析看板的数据,以及如何用它来指导业务决策:
•数据解读:在性别占比上,亚马逊平台女性消费者占比达64.45%,远超男性。年龄分布方面,21 - 35岁客群占比68.77%,其中21 - 25岁年龄段占比最高,为40.86%。购买偏好上,服装和时尚、美容和个人护理、家庭和厨房位列前三。购物频次上,每月“一个月几次”购物的消费者占比达三分之一。
•分析结论:亚马逊平台的主要消费群体是年轻女性,应该关注年轻女性的消费心理和流行趋势,在服装、美容、家庭用品等热门品类中,打造更多符合年轻女性喜好的爆款产品,以此提高产品销量和市场份额。
(2)消费者购物链路
•数据解读:购前阶段,37.04%的消费者通过产品类别搜索,35.55%的消费者通过关键词搜索。购中阶段,对商品评论依赖程度重要和适度占比达57.81%;35.8%的消费者会加购,加购转化率为21.7%;加购后放弃购买的原因主要是其他地方价格更优(占一定比例)、改变主意或不再需要产品、运输成本高。购后阶段,近一半消费者未留评 。
•分析结论:购前要精准划分产品类别、优化关键词,提高产品搜索曝光率。购中需重视商品评价管理,提升服务质量获取好评;强化加购引导;优化供应链降低成本,提升价格竞争力。购后要注重服务质量,鼓励消费者留评,以提升产品销量。
(3)平台服务影响因素和改进建议
•数据解读:消费者对亚马逊满意因素中,有竞争力的价格占比31.06%,个性化产品推荐功能占比30.73%。改进建议方面,客户服务响应能力、产品质量和准确性、减少包装上的浪费位列前三。产品推荐中,消费者收到推荐频次“极少”占比偏高,产品推荐一般和不准确的占比达77.64%。平台满意度上,比较满意比例为11.13%,非常满意仅为2.82%,不满意和非常不满意比例超50%。
•分析结论:应持续发挥价格和个性化推荐优势。具体而言,平台要优化推荐算法,提高推荐频次和准确性;卖家要深入研究推荐规则。同时,加强客服培训,把控产品质量,减少包装浪费,提升物流配送、售前售后服务、个性化服务水平,从而提高消费者满意度。
3、交叉联动分析
在对消费者调研数据进行初步分析后,发现单一维度的分析难以深入挖掘亚马逊的业务问题,需要通过多维度交叉联动的系统性分析才能形成有效结论。因此,将性别、年龄、购买商品偏好、购物频次等多个维度的数据进行交叉分析,挖掘出数据之间隐藏的关联和规律。
(1)数据解读
•性别维度:女性消费者占比77.14%,男性消费者占比22.86%,女性是主要消费群体。
•年龄维度:21 - 25岁年龄段消费者占比39.72%,31 - 35岁年龄段占比19.15%,其余年龄段占比较为分散,21 - 25岁是占比最高的年龄段。
•购买商品偏好维度:消费者购买商品偏好较为多样,涵盖杂货和美食、美容和个人护理、服装和时尚、家庭和厨房等类别。
•购物频次维度:“一个月几次”的消费者占比44.26%,“每周一次”的占比32.79%,购物频次相对较高的消费者占比较大。
(2)分析结论
•性别与年龄:女性消费者在各年龄段均可能占据较大比例,尤其是21 - 25岁这一占比较高的年龄段,女性可能是核心消费力量。
•性别与购买商品偏好:由于女性消费者占比高,且在美容和个人护理、服装和时尚等品类的购买上更为突出,可针对性优化此类商品推荐和服务。
•年龄与购买商品偏好:21 - 25岁年轻消费者占比高,在美容和个人护理、服装和时尚等品类需求较大;31 - 35岁消费者或许对家庭和厨房、杂货和美食等品类关注度更高,可依此调整商品布局和营销重点。
•购买商品偏好与购物频次:“一个月几次”和“每周一次”的高频次购物消费者占比较大,对于热门品类如服装和时尚等,可以更积极地更新款式、开展促销活动,满足高频购买需求。
•多维度综合:综合来看,年轻女性消费者是高频购买美容和个人护理、服装和时尚品类的重要群体,可围绕这一群体制定精准营销策略,如个性化推荐、专属优惠等,提升其购物体验和忠诚度;对于其他年龄段和性别的消费者,也依据其特征进行针对性营销和服务优化。
特此声明,此案例由团队LKL制作,参加了2023BI数据分析大赛,并获得了优秀的成绩,对亚马逊消费者的分析思路和数据处理方法值得大家学习和实操。
04 总结
消费者洞察的本质,是通过系统性数据整合与深度分析,将碎片化行为转化为可落地的商业策略。在亚马逊案例中我们看到,精准洞察的关键在于三点:打破数据孤岛(整合交易、行为、反馈数据)、构建动态分析链路(从用户分层到行为轨迹还原)、工具提效(借助FineBI等工具缩短数据处理周期)。但消费者洞察不是一次性工程,而是持续迭代的过程。每一次点击、每一条评论、每一笔订单都是用户需求的直接表达。唯有将数据资产转化为决策依据,才能在激烈的竞争中快速响应变化,实现从“被动应对”到“主动预判”的跨越。
本文来自:数据分析不是个事
更多数据分析相关博客、技术专栏访问数据分析社区 | 巨人肩膀