电气设备的局部放电

局部放电是绝缘介质中微小击穿现象,可能导致电气设备绝缘劣化。常用的检测方法包括脉冲电流法、特高频电流检测法、超声波检测法和TEV检测法,每种方法各有优缺点并适用于不同电气设备和放电类型。局部放电的检测对于预防电气系统故障至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

局部放电是绝缘介质中局部区域击穿导致的放电现象。与击穿或者闪络不同,局部放电是绝缘局部区域的微小击穿,是绝缘劣化的初始现象。电气设备绝缘材料多为有机材料,如变压器油、绝缘纸、环氧等。通常电气设备绝缘体所承受的电场分布是不均匀的,面电价质本身通常也是不均匀的。如气体-固体复合绝缘、液体-固体复合绝缘等。即使是单一的绝缘介质,在制造、运行过程中也会在价质内部出现气泡、杂质等其他物质,这就导致了在绝缘介质内部或表面会出现高场强区域,一旦这些区域的场强高到足以引起该区域的局部击穿,就会出现局部放电,而此时其他区域仍会保持良好的绝缘性能,这就形成了局部放电,它可能产生在固体绝缘孔隙中、液体绝缘气泡中或不同介电特性的绝缘层间。一旦介质中出现局部放电,通过对其周围绝缘介质不断侵蚀,最终会导致整个绝缘系统的失效。

目前探测局部放电的方法:

1. 脉冲电流法

使用耦合罗氏线圈从电力设备的中性点或接地点测量由于局部放电引起的脉冲电流,以获得放电量、放电相位、放电频次等信息。

宽带检测法:

频率范围:下限频率为30~100KHZ,上限检测频率<500KHZ.

优点:脉冲分辨率高、信息相对丰富

缺点:信噪比低

窄带检测法:

频率范围:中心频率50KHZ~1MHZ,带宽9~30KHZ.

优点:灵敏度高、抗干扰能力强

缺点:脉冲分辨率低、信息不够丰富

高宽带30MHZ+数据处理算法+噪声剔除算法:

频率范围:拉宽到30MHZ

主要特点:信号时域频域变换,根据局放信号特征分离噪声与信号,对局放信号进行识别

使用设备:

ROGOWSKI线圈,以分析仪

 

测试原理图:

 

 2. 特高频电流检测法

局部放电时会产生陡的电流脉冲向外辐射电磁波,放电间隙小放电时间短,辐射高频能力强。放电时间为ns级,电磁波频率GHZ。使用高频天线对电磁波进行接收。

特高频窄带检测法:

频率范围:中心频率数百MHZ,带宽为数十MHZ

优点:避开现场干扰,提高信噪比

缺点:接收信号能量受到限制

特高频宽带检测法:

频率范围:检测频带内的所有信号

优点:信息量大,信息特征多,可避免遗漏特征峰

缺点:干扰信号过多,造成信噪比低,影响后续分析

使用设备:

GIS设备法兰处安装:                            开关柜柜门安装:

    

变压器油盖安装:

 

3. 超声波检法

在局部放电的过程中,电流脉冲会将局部区域瞬间加热膨胀,形成类似爆炸效果,形成超声波,其从放电点以球面波方式传播。超声波频谱会宽,但衰减大。

频率范围:GIS(25KHZ上下),变压器(150KHZ)

特点:现场操作简单,应用便捷,目前有压电式传感器检测技术、光纤传感器检测技术。

使用设备:

 

4. TEV检测法

放电产生的电荷通常集中在接地点附近的接地金属部位,在设备的表壳上形成纳秒级的信号电流。使用电容式感应器将表面电压耦合至传感器。

特点:不仅可以对运行中的开关柜内的设备局部放电状况进行定量测试,又可通过同一放电源到不同位置的时间差异来对局部放电源进行定位

TEV测试示意图:

以上的各种测试方法各用其适用范围,一般情况下对具体电气设备及具体放电类型的不同要选择不同的测试方法,或多种测试方法进行联合测试。

### 脉冲电流法局部放电测量仪的工作原理 脉冲电流法是基于当发生局部放电时,在被试品两端会产生瞬态电压变化,此变化会通过耦合阻抗形成一个小幅值的脉冲电流信号。该信号经过高灵敏度的检测回路放大处理后,由数据采集卡转换成数字信号并传输给计算机进行后续分析[^1]。 具体来说,仪器通常配备有一个宽带宽、低噪声前置放大器来捕捉微弱的电信号;同时为了减少外界干扰的影响,还会采用屏蔽措施以及同步滤波算法等技术手段提升信噪比。最终得到的结果可以用来评估电气设备内部是否存在潜在缺陷及其严重程度。 ### 应用场景 对于全封闭气体绝缘组合电器(GIS),由于其结构紧凑且密封良好,传统的离线测试难以全面反映实际运行状态下的健康状况。因此,利用脉冲电流法构建在线监测系统成为了一种有效的方式。这种方式不仅能够持续跟踪记录局放活动趋势,而且有助于及时发现早期故障征兆,从而采取预防性维护策略以保障电网的安全稳定供电[^2]。 此外,这种方法同样适用于其他类型的高压电力装置如变压器、电缆终端头等领域内的绝缘性能监测工作当中。 ```python # Python伪代码展示如何读取和初步处理来自传感器的数据流 def process_pulse_current_signal(sensor_data_stream): # 对输入的数据流做预处理操作 preprocessed_data = preprocess(sensor_data_stream) # 使用特定算法提取特征向量 feature_vector = extract_features(preprocessed_data) return analyze(feature_vector) def main(): sensor_input = read_from_sensor() result = process_pulse_current_signal(sensor_input) print(result) if __name__ == "__main__": main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值