goal

线段树进阶,主席树,莫队,相似kmp,悬线,单调栈,单调队列,ac自动机,后缀数组,后缀自动机

图论:最短路,差分约束,二分图,网络流,连通分量 不学图论了我太难了
 
三分找,单调增+max+单调减/单调减+min+单调加,中的max/min,复杂度2log3(n)(比二分慢)
double three_devide(double low,double up)
{
    double m1,m2;
    while(up-low>=eps)
    {
        m1=low+(up-low)/3;
        m2=up-(up-low)/3;
        if(f(m1)<=f(m2))
            low=m1;
        else
            up=m2;
    }
    return (m1+m2)/2;
}
View Code

单调队列

#include <iostream>
using namespace std;
const int N = 10000;  // 数组长度的最大值
struct data {
    int id, value;
} q[N];
int a[N], n, k, l, r;
int main() {
    scanf("%d%d", &n, &k);
    for (int i = 0; i < n; ++i) {
        scanf("%d", &a[i]);
    }
    l = 0, r = -1;  // 队首和队尾在数组 q 中的下标
    for (int i = 0; i < n; ++i) {
        while (l <= r && q[l].id <= i - k) l++;  // 不断弹出不符合要求的队首元素
        while (l <= r && q[r].value <= a[i]) r--;  // 不断弹出不符合要求的队尾元素
        q[++r] = {i, a[i]};  // 将当前元素入队
        printf("%d %d\n", i, q[l].value);  // 输出当前滑动窗口内的最大值
    }
    return 0;
}
View Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
int a[maxn],out,i,l=0,r=-1;
char ch[20];
struct data
{
    int id,value;
}q[maxn];

int main()
{
    scanf("%s",ch);
    while(scanf("%s",ch))
    {
        if(ch[0]=='E')return 0;
        else if(ch[0]=='O')
        {
            if(l>r)printf("%d\n",-1);
            else
            {
                out++;
                while(l<=r&&q[l].id<out)l++;
                if(l>r)printf("%d\n",-1);
                else printf("%d\n",q[l].value);
            }
        }
        else if(ch[0]=='I')
        {
            int x;
            scanf("%d",&x);
            a[i++]=x;
            while(l<=r&&q[r].value<x)r--;
            q[++r]={i-1,x};
            printf("%d\n",q[l].value);
        }
    }
    return 0;
}
View Code

 

https://oi-wiki.org/

2019ccpc厦门+?

try a try,拿个牌子叭(*╹▽╹*)

...

转载于:https://www.cnblogs.com/myrtle/p/11349232.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值