【数据库学习】之索引学习详解MySQL(基础详解1)

hello!欢迎大家来到我的【数据库学习】之索引学习详解MySQL(基础详解1)希望这篇文章能对你有所帮助!!!

相关数据库内容:

http://t.csdnimg.cn/ZdmdP

http://t.csdnimg.cn/XhWCz

http://t.csdnimg.cn/AJieT

http://t.csdnimg.cn/1I48U

目录

1.索引概述

1.1介绍

1.2演示 

1.3特点 

2.索引结构

2.1概述

2.2二叉树

2.3B-Tree

2.4B+Tree 

3.索引分类

3.1索引分类

3.2聚集索引&二级索引

4.索引语法


1.索引概述

1.1介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

1.2演示 

假如我们要执行的SQL语句为 : select * from user where age = 45; 

  • 在无索引情况下:就需要从第一行开始扫描,一直扫描到最后一行,我们称之为全表扫描,性能很低。

在有索引的情况下:

备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并不是索引的真实结构,索引的真实结构,后面会详细介绍。

1.3特点 

优势劣势
提高数据检索的效率,降低数据库的IO成本索引列也是要占用空间的
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低

2.索引结构

2.1概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

索引结构描述
B+Tree索引最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash索引底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询
R-tree(空间索引)空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-text(全文索引)是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES
索引InnoDBMyISAMMemory
B+tree索引支持支持支持
Hash索引不支持不支持支持
R-tree(空间索引)不支持支持不支持
Full-text(全文索引)5.6版本之后支持支持不支持

注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

2.2二叉树

 

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

所以,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。
  • 大数据量情况下,层级较深,检索速度慢。 

我们可以选择红黑树!!!!!红黑树是一颗自平衡二叉树!!!

 但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

  • 大数据量情况下,层级较深,检索速度慢。

2.3B-Tree

B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。树的度数指的是一个节点的子节点个数。

我们可以使用下面的可视化网站进行测试:

B-Tree Visualization (usfca.edu)icon-default.png?t=N7T8https://www.cs.usfca.edu/~galles/visualization/BTree.html

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。 

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • 在B树中,非叶子节点和叶子节点都会存放数据。

2.4B+Tree 

我们可以看到,两部分:

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

 我们可以使用下面的可视化网站进行测试:

B+ Tree Visualization (usfca.edu)icon-default.png?t=N7T8https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

和上面一样最大度数选择5: 

插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。

最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

  • 所有的数据都会出现在叶子节点。
  • 叶子节点形成一个单向链表。
  • 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。

在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。


3.索引分类

3.1索引分类

分类含义特点关键字
主键索引针对于表中主键创建的索引默认自动创建,只能有一个PRIMARY
唯一索引避免同一个表中某数据列中的值重复可以有多个UNIQUE
常规索引快速定位特定数据可以有多个
全文索引全文索引查找的是文本中的关键词,而不是比
较索引中的值
可以有多个FULLTEXT

3.2聚集索引&二级索引

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类含义特点
聚集索引(Clustered Index)将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据必须有,而且只有一个
二级索引(Secondary Index)将数据与索引分开存储,索引结构的叶子节点关
联的是对应的主键
可以有多个

 

聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引。
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。

聚集索引和二级索引的具体结构如下:

  • 聚集索引的叶子节点下挂的是这一行的数据 。
  • 二级索引的叶子节点下挂的是该字段值对应的主键值。 

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

具体过程如下:

  1. 由于是根据name字段进行查询,所以先根据 name='Arm' 到 name 字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
  2. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
  3. 最终拿到这一行的数据,直接返回即可。

回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。 

//以下两条SQL语句,那个执行效率高? 为什么?
select * from user where id = 10 ;//A
select * from user where name = 'Arm' ;//B

A语句的执行性能要高于B 语句。
因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然
后再查询聚集索引,也就是需要进行回表查询。


4.索引语法

1.创建索引

CREATE [UNIQUE | FULLTEXT] INDEX index_name ON table_name(index_col_name...);

2. 查看索引

SHOW INDEX FROM table_name 

3.删除索引

DROP INDEX index_name ON table_name;

示例:

a.name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。

CREATE INDEX idx_user_name ON tb_user(name);

b. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。

CREATE UNIOUE INDEX idx_user_phone ON th_user(phone);

c. 为profession、age、status创建联合索引。

CREATE INDEX idx_user_pro_age_ata ON tb_user(profession,age status):

d. 为emai1建立合适的索引来提升查询效率。

CREATE INDEX idx_email ON tb_user(email):

参考:黑马程序员 


好啦!到这里这篇文章就结束啦!这就是本篇文章的全部内容了,接下来我还是会更新数据库索引的下半内容的!记得点点小爱心和关注哟!!!不要错过下一片博客呦!!一起共同进步,交流学习!

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值