离散数学笔记-算法部分

N久N久没有更新这个东西了。一半是在忙其他事情,一半是确是有点畏惧离散数学部分。今天总结的东西都已经是一个月前的东西了。主要包括下面几个部分

1、算法的定义(无聊的东西……)
2、算法分类(普及一下知识)
3、算法的设计基本方法(非常重要的东西,但是这里只简单提一下)
4、算法复杂度与函数的增长(复杂而又麻烦的东西,用简单的语言随便说一说)
5、几个算法展示

1、算法的定义

算法(Algorithm)是一系列解决问题的清晰指令
算法可以使用自然语言、伪代码、流程图等多种不同的方法来描述。
关于Algorithm有五个特性,也不知道是什么人总结的,总之看看就好,没有深究的必要。

1、有穷性(Finiteness)
算法的有穷性是指算法必须能在执行有限个步骤之后终止
2、确切性(Difiniteness)
算法的每一步骤必须有确切的定义;
3、输入项(Input)
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4、输出项(Output)
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性(Effectiveness)
算法中执行的任何计算步都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成。(也称之为有效性)

PS.《数据结构+算法=程序》的作者叫做尼克劳斯-沃思

2、算法分类

算法可大致分为

基本算法
数论与代数算法
加密算法
排序算法
随机化算法
数据结构的算法--关于链表,队列,堆栈,树等等的算法
图论的算法--和图相关的各种算法
计算几何的算法--包括向量,各种平面立体几何相关的算法
动态规划以及数值分析--将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解
检索算法--与搜索类似,但是因为信息的特别性,有非常特别的检索方式
并行算法--区别于串行算法,同时执行独立的计算

 

3、算法的设计基本方法

1.递推法
它把问题分成若干步,找出相邻几步的关系,从而达到目的。比如过F(N)与F(N-1)有关。利用计算F(1)得出F(2)再得出F(3)……直到得出F(N)。这种就是一个递推的过程一个一个推上去。
2.递归
一个函数不断引用自身,直到引用的对象已知。可以理解是递推发的逆向,但是变得复杂很多。比如同上F(N)与F(N-1)有关,而且知道一个终止条件如F(1)已知。用递归思想计算F(N),那么就必须先算F(N-1),计算F(N-1)要先算F(N-1-1)即F(N-2)……直到计算F(2),利用到F(1)。|||通过F(1)算出了F(2),算出了F(2)就能算出F(3)……最终得到F(N)。这里我用|||把递归过程分隔成两个部分,递|||归。关于递归的更多部分,还会在做专门的总结。
3.穷举搜索法
对可能的解按某种顺序进行逐一枚举和检验。极度暴力的方法,不过往往很好用……
4.贪婪法
简单的说就是每一步都选择最大的利益,但是这样往往导致最终的结果不是最优解。不过我们还是可以得到一个还不错的解。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况。
5.分治法
分治法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
这个东西非常牛逼,要顺便记一下他的简写DP。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。DP给我的感觉就是死咬住最优解,求得到最优解的前一步是什么,然后一路递归到出发点。(不知道有没有计算可以再好好玩一玩)

4、算法复杂度与函数的增长

看一个算法好不好,有很多方面,最简单直观的方法就是分析一个算法的时间复杂度和空间复杂度。
空间复杂度就是估计一下一个算法需要使用到的内存,分析方法与分析时间复杂度类似,而且我们不常需要分析空间复杂度(不是说它不重要!)。

严格的说,我们是没办法算出一个消耗的时间的(除非我们拿到机器上跑)。
不过我们可以算出一个算法遇到一个n规模的问题(或者说输入的数据量为N)时,使用某个算法需要执行多少条语句,这里用个一个函数T(N)表示。
值得一提的是,其实不同的语句执行的速度也是有很大差距的。但是一会我们要分析N趋于无穷大的情况,所有很多小东西都会被忽略掉。

现在我们就来讨论一下T(N)的事,如果有两个功能相同算法,遇到N个数据量时需要执行的语句数分别是T1(N)和T2(N)。现在我们要比较这两个算法的在时间是的好坏,如果N是一个具体的数,那带到函数里计算一下就好了。但是这个不能反映出两个算法的真正实力。所以呢,我们使用的方法是计算当n趋于无穷大时T1(N)/T2(N)。(这里有没有一点点高数上计算无穷小的感觉,其实就是反过来),如果T1(N)/T2(N)在N趋于无穷时,是一个无穷大量,说明T2比T1牛逼。如果是0(即无穷小量)就反过来。如果出来是一个常数,说明T1和T2同阶级,如果常数刚好是1,那么这两个算法就在时间复杂度上就一样了。比较时间复杂度本质上就是比较几个T(N)之间函数的相对增长率。

到这里,我们就可以比较两个算法的时间复杂度了,然而如果有四五种算法要比较好坏,两两相比的方法似乎比较麻烦。于是我们想说能不能定义一些等级,看一看每个算法属于什么登记就可以估计他的复杂度。具体的做法是构造一个函数F(N),通常是弄成下面几种
F(N) = 1
F(N) = logN
F(N) = N
F(N) = N logN
F(N) = N2
F(N) = N3
F(N) = 2N
F(N) = N!
这些级别之间的差异,很多书上都有列表和函数图来让你体会,我就偷懒一下不贴图了。
接下来呢,比较T(N)和F(N)中的一个确定T(N)所在的等级。

这里要先介绍几个定义和符号。
当N很大时(趋于无限),T(N) <= cF(N),c为一个常数,我们记为T(N) = O(F(N)); 读 大O……
当N很大时(趋于无限),T(N) >= cF(N),c为一个常数,我们记为T(N) = Ω(F(N)); 读 omega
当T(N) = O(G(N)) 且 T(N) = Ω(G(N)) 记为T(N) = Θ(G(N));读 theta
当T(N) = O(G(N)) 且 T(N) != Ω(G(N)) 记为T(N) = o(G(N));读 小o……

这里解释一下常数c,这个只是为了消除同阶级之间的差别,也就是上面有写到的T1(N)/T2(N)=一个常数,不论这个常数是什么,1也好,0.00000001,或者1000000我们都把他们看作在同一个等级。因为相比于无穷大和无穷小,常数级别的差异都可以忽略。定义一说明T(N)增长率大于等于F(N),第二个反过来。第三个说明两个函数增长率同阶(相等,忽略常数)。第四个说明T(N)增长率严格小于G(N)。
理论上有这么多东西,但是我们往往只求O(F(N))

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散数学笔记 1. 集合 集合是离散数学的基础概念之一。一个集合是由一些元素组成的,这些元素可以是数、字母、符号、图形等等。 - 集合的表示方法 集合可以用大括号{}表示,元素之间用逗号隔开。例如,{1,2,3,4}表示一个由1、2、3、4四个元素组成的集合。 - 集合的基本运算 并集:表示集合A和集合B中所有元素的集合,用符号∪表示。例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。 交集:表示同时属于集合A和集合B的元素的集合,用符号∩表示。例如,A={1,2,3},B={3,4,5},则A∩B={3}。 差集:表示属于集合A但不属于集合B的元素的集合,用符号-表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 补集:表示集合A中不属于集合B的元素的集合,用符号A-B表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 2. 命题逻辑 命题逻辑是一种研究命题之间的逻辑关系和推理规律的数学分支。命题是指可以判断真假的陈述句。 - 命题的表示方法 命题可以用字母或符号表示。例如,P表示“今天是星期天”。 - 命题的逻辑运算 非运算:表示取反,用符号¬表示。例如,¬P表示“今天不是星期天”。 合取运算:表示“且”,用符号∧表示。例如,P∧Q表示“今天是星期天并且明天是星期一”。 析取运算:表示“或”,用符号∨表示。例如,P∨Q表示“今天是星期天或者明天是星期一”。 蕴含运算:表示“如果……那么”,用符号→表示。例如,P→Q表示“如果今天是星期天,那么明天是星期一”。 等价运算:表示两个命题具有相同的真值,用符号↔表示。例如,P↔Q表示“今天和明天都是星期天”。 3. 谓词逻辑 谓词逻辑是一种研究谓词之间的逻辑关系和推理规律的数学分支。谓词是指可以应用于一个或多个对象的属性或关系。 - 谓词的表示方法 谓词可以用字母或符号表示。例如,A(x)表示“x是一个人”。 - 谓词的逻辑运算 量词:表示谓词适用于某些对象或全部对象。有普遍量词∀和存在量词∃两种。例如,∀x A(x)表示“所有的x都是人”,∃x A(x)表示“存在一个x是人”。 连接词:表示谓词之间的逻辑关系。有合取词∧、析取词∨、蕴含词→、等价词↔等四种。例如,A(x)∧B(x)表示“x既是人又是男性”,A(x)∨B(x)表示“x是人或者x是男性”。 4. 图论 图论是一种研究图和图的性质的数学分支。图是由点和边组成的结构,点表示对象,边表示对象之间的关系。 - 图的基本概念 无向图:所有的边没有方向。 有向图:所有的边有方向。 简单图:没有自环和重边的图。 完全图:每个点都与其他点有边相连的图。 - 图的基本运算 路径:表示通过边相连的一系列点的序列。 回路:表示起点和终点相同的路径。 连通图:表示任意两个点之间都存在路径的图。 强连通图:表示任意两个点之间都存在有向路径的图。 生成树:表示包含所有点和最少边的树。 最短路径:表示两个点之间边权和最小的路径。 5. 组合数学 组合数学是一种研究离散结构之间的组合关系和计数方法的数学分支。 - 排列组合 排列:从n个不同元素中取出m个元素进行排列的方式数,用符号P(n,m)表示。 组合:从n个不同元素中取出m个元素进行组合的方式数,用符号C(n,m)表示。 - 二项式定理 二项式定理是组合数学中的一个重要公式,表示(a+b)^n的展开式中各项系数的规律。其公式为: (a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + … + C(n,n)b^n 其中C(n,m)表示从n个不同元素中取出m个元素进行组合的方式数。 - 错排问题 错排问题是组合数学中的一个经典问题,表示n个元素的排列中,恰好有m个元素排列正确的方式数。其公式为: D(n,m)=(n-m)(D(n-1,m-1)+D(n-2,m-1)) 其中D(n,m)表示n个元素的排列中,恰好有m个元素排列正确的方式数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值