题目描述:在二维数组grid中,grid[i][j]代表位于某处的建筑物的高度。 我们被允许增加任何数量(不同建筑物的数量可能不同)的建筑物的高度。 高度 0 也被认为是建筑物。
最后,从新数组的所有四个方向(即顶部,底部,左侧和右侧)观看的“天际线”必须与原始数组的天际线相同。 城市的天际线是从远处观看时,由所有建筑物形成的矩形的外部轮廓。 请看下面的例子。
建筑物高度可以增加的最大总和是多少?
例子:
输入: grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]]
输出: 35
解释:
The grid is:
[ [3, 0, 8, 4],
[2, 4, 5, 7],
[9, 2, 6, 3],
[0, 3, 1, 0] ]
从数组竖直方向(即顶部,底部)看“天际线”是:[9, 4, 8, 7]
从水平水平方向(即左侧,右侧)看“天际线”是:[8, 7, 9, 3]
在不影响天际线的情况下对建筑物进行增高后,新数组如下:
gridNew = [ [8, 4, 8, 7],
[7, 4, 7, 7],
[9, 4, 8, 7],
[3, 3, 3, 3] ]
说明:
1 < grid.length = grid[0].length <= 50。
grid[i][j] 的高度范围是: [0, 100]。
一座建筑物占据一个grid[i][j]:换言之,它们是 1 x 1 x grid[i][j] 的长方体。
题目已经很明确的告诉了我们需要求出行和列的最大值,所以首先我们得求出行的列的最大值,行好求,一行作为一个元素进行迭代,找出行list中的最大值,列我就像着以列作为循环的条件一一比较的出最大值,后来脑子抽风,想着emmm,把这个矩阵转置了一下,按照行的方式求最大值。
下面计算能增加的最大高度,为了保持行和列的最大值不变,所以每一栋楼能增加的最大层数是这栋楼所在的行列最大值之间的那个小一点的数。我觉得还是蛮好理解的。
代码:
class Solution:
def maxIncreaseKeepingSkyline(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
horizonal=[]#存放水平方向最大的数
b=[]
c=[]
count=0
vertical=[]#存放竖直方向最大的数
for m in grid:
horizonal.append(max(m))
for i in range(len(grid[0])):#列数
for j in range(len(grid)):#行数
b.append(grid[j][i])#每列存进一个数组
c.append(b)#按列存放进一个二维数组
b=[]#列数组清空
for t in c:
vertical.append(max(t))
print(horizonal)
print(vertical)
for i in range(len(grid)):
for j in range(len(grid[0])):
minvalue=min(horizonal[i],vertical[j])#每栋楼能增肌的最大数是这栋楼所在的水平和数值方向最大值的最小值的数字
count+=minvalue-grid[i][j]
return count