据央视网最新消息,2024年诺贝尔化学奖授予大卫·贝克(David Baker)、戴米斯·哈萨比斯(Demis Hassabis)和约翰·江珀(John M.Jumper),以表彰他们在蛋白质设计和蛋白质结构预测领域作出的贡献。3名获奖者将共同分享1100万瑞典克朗奖金,约合人民币745万元。
三位科学家是利用人工智能进行蛋白质研究的知名学者,特别是在利用人工智进行蛋白质结构预测方面做出了开创性的贡献,提出的AlphaFold2和RoseTTAFold等著名的算法对该领域的发展产生了革命性的影响。继2024年诺贝尔物理学奖授予人工智能学者之后,2024诺贝尔化学奖再次授予人工智能学者。这一现象充分说明人工智能与各个基础学科联系的广泛性和紧密性。
近年来人工智能的主流方向之一:AI for Science,即基础科学中的人工智能,实现了人工智能与传统学科的强强联合,为基础科学的研究提供了新的研究范式。例如,数学家利用人工智能来进行定理证明、方程求解;物理学家利用人工智能来对复杂问题进行建模;化学家利用人工智能对新的物质结构进行预测等。
可以预见,随着大模型及智能体等人工智能技术的进一步发展和提高,人工智能与基础科学的结合将更加紧密,也将深刻改变基础科学的研究方法,加速新的研究范式的产生和不断革新。人工智能对于各个基础学科的重要性将愈发凸显,AI for Science将成为人工智能最重要的研究方向之一。