第六章 狭义相对论
(1)
1900年,世纪发轫,年度的英雄人物之中,希尔伯特在巴黎数学家大会上提出了那著名的23个世纪难题,其中不包括庞加莱猜想,poincare猜想出现于1904年,这个猜想说假如某三流形具有与三维球面一样的同伦群,那么这个三维流形只能是三维球面。1900年,在英国皇家学会的新年庆祝会上,著名物理学家开尔文勋爵作了展望新世纪的发言。回顾过去峥嵘岁月, 他充满自信地说:物理学的大厦已经建成,未来的物理学家只需要做些修修补补的工作就行了。只是明朗的天空中还有两朵乌云,一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。
那时候是世纪之初,看来有一种新时代的浮躁。实际上,当时的物理学大厦压根就是一小庙,更广大的天空和宇宙还在神秘之中。数学和物理学面临一个大雨欲来风满楼的局面,相对论是一个交叉地带,数学家庞加莱和希尔伯特也在相对论上做过工作。庞加莱得到了lorentz变换,希尔伯特在爱因斯坦之前得到了正确的广义相对论场方程。爱因斯坦去哥廷根报告他的工作的时候,一开始得到的场方程是R-ab=T-ab。其中R-ab是里奇张量。
在爱因斯坦之前,物理学家lorentz和数学家poincare都已经在这个方向上作了大量的工作,用现代语言来讲,平坦闵氏时空的保度量变换就是poincare变换群,而lorentz变换群就是poincare变换群的一个子群。但poincare似乎是完全接受不了爱因斯坦的狭义相对论,虽然两个人的结果是几乎一样的。所以poincare虽然一辈子作了不少关于相对论的演讲。但是他从来就不提起过爱因斯坦与相对论这两个词。
某个时候,爱因斯坦的母校ETH(苏黎世理工学院)要聘请爱因斯坦当教授,poincare写了一封信,大大的夸奖了爱因斯坦一番,但最后一段比较微妙:“我不认为他的预言都能被将来验证,他从事的方向那么多,因此我们应该会想到,他的某些研究会走向死胡同。但在同时,我们有希望认为他走的某一个方向会获得成功,而某一个成功,就足够了。”
poincare于1912年去世,他的贡献可以彪炳千古,其在微分几何上有一个poincare引理,说的是一个闭形式能不能整体地写成一个恰当形式。这个引理说,如果微分形式F=dA,称F是恰当的,那么dF=0;如果反过来,dF=0,称F是闭的,但不一定能有整体的F=dA,要想实现整体的F=dA这样的结果,要求流形是可以缩为一点的。poincare引理言简意赅,但很容易引出高斯-斯托克斯积分公式,也可以引出
纤维丛的示性类,所以著者可以主观地说:“把一个微分几何学家和广义相对论学家从睡梦中摇醒,问他什么是poincare引理。假如答不出来,那他一定是假的。”poincare去世了,有个数学界的组织者给爱因斯坦去了一封信,说要出个纪念文集来纪念poincare,爱因斯坦拖了四个月才回信说,由于路上的耽搁,信刚刚收到,估计已经晚了,偏偏这位组织者不死心,说晚了也没关系,你写了就行。
于是爱因斯坦又过了两个半月回信说,由于事务繁忙,实在没力气写了,然后不了了之。
经典物理学的终结者是麦克斯韦。他同时在天体物理学、气体分子运动论、热力学、统计物理学等方面,都作出了卓越的成绩。普朗克(Max Plank )说:“麦克斯韦的光辉名字将永远镌刻在经典物理学家的门扉上,光芒万丈。从出生地来说,他属于爱丁堡;从个性来说,他属于剑桥大学;从功绩来说,他属于全世界”。从研究方向看,很多人可能与他有一定的相似性,李政道也是。李政道在天体物理学上,把钱道拉塞卡极限从5.6倍太阳质量推到了1.4倍太阳质量,在统计物理方面,李政道证明了二维空间不存在湍流,后来又与杨振宁合作证明了单位圆分解定理。湍流是非常重要的,国内的极早就开始研究相对论的周培源教授,就化了大量力气来研究湍流。瓦特发明蒸汽机的之前,他注意到水的沸腾可以推动茶壶的盖子,但后来研究流体力学的人发现,沸腾是一件很严重的事情,在那个时候,热传导方程就不能再使用了。在那里,人们看到了湍流,纳维叶-斯托克斯偏微分方程,可以描述湍流。没有问题,湍流一直跟生活关系密切。
1900年,爱因斯坦大学毕业,天之骄子,难免意气风发,爱因斯坦试图留校当物理教授韦伯的助教,那样的话,爱因斯坦可以继续在那里读书然后得到博士学位。但是韦伯似乎不喜欢爱因斯坦,他要了两个外系的学生当助教,偏偏不要爱因斯坦,于是,爱因斯坦非常失望,对于前途的打算,被韦伯悉数破坏。在他1905年建立狭义相对论之前,爱因斯坦的人生似乎波澜四起,命运多舛,他还没有结婚,但女朋友米列娃就给他生了一个女儿。据说这个女儿后来被爱因斯坦当作养子来抚养,爱因斯坦的父母反对他与米列娃结婚。他找不到工作,四处碰壁,还做了一阵家庭教师,生活显示出巨大的不稳定性,就象是一个蜘蛛网,罩了爱因斯坦一脸。为了找工作,爱因斯坦发了不少的求职信,但没有一个成功,爱因斯坦认为,很多用人单位要人,但他们往往去大学里打听他,韦伯一定说了不少坏话。1902年,在他的朋友格罗斯曼的帮助下,爱因斯坦终于在伯尔尼的瑞士联邦专利局找到了一份稳定的工作。
早在16岁时,爱因斯坦就了解到光是电磁波,他想,如果一个人以光速运动,他看到的世界会是一个什么样子?
爱因斯坦的少年时代的这个问题,一直引导着他前进,后来使得他博得了冷酷历史的嫣然一笑。爱因斯坦之所以那样想,是因为惯性参考系的相对性。爱因斯坦年少时的问题具有他思想上的光芒,但用光子来做参考系是没有意义的。但参考系是重要的,中国古代有庄周梦蝶的故事,很是朴素,大致是在说同样的事情。我上大学一年级的时候,第一次听到这个故事,觉得很惊人,朴素的思想,很大的奥妙。在运动学上,如果一个苍蝇绕着一个静坐在凳子上的人的脑袋打转,牛顿时代的看法是,苍蝇与该人的地位是平等的,因为在苍蝇看来,人是在绕着自己在打转。但事情远非那样简单,在人和苍蝇这个系统的背景下,有一个Minkowski惯性系,这个参考系中,人的世界线是一条测地线,而苍蝇的世界线是螺旋上升的一条曲线,不是测地线。通俗地讲,在四维时空里看来,苍蝇和人,不具有同等的地位。在时空图中,人的世界线是直线,是Minkowski背景时空上的测地线。而苍蝇的世界线是螺旋线。到了这里,一个新奇的世界已经展开。时间这个维度被加了进来,一个四维的参考系,显得比三维的参考系要多了一些新颖的东西。“世界线”这个词语,变成狭义相对论中最时髦的词语之一。
(2)
狭义相对论的最主要的公式是洛伦兹变换,是洛伦兹最先给出的,但相对论的创始人却不是洛伦兹而是爱因斯坦。
洛伦兹也认为,相对论是爱因斯坦提出的。 洛伦兹变换考虑惯性参考系之间的线性变换。假如是非线性的变换,就可能把一个没有零温度的惯性参考系变成一个热辐射的参考系,这就是林德勒变换。
从麦克斯韦电磁可以知道电磁波以光速传播,而且光速是一个恒定的常数。伽利略相对性原理说,物理规律在一切惯性系中都是相同的。麦克斯韦方程组在所有惯性系中都应成立,这就是说,光速在任何惯性系中都应该相同,都应是同一个常数c 。但同时按照伽利略相对性,惯性系之间可以差一个相对运动速度v 。依照速度(矢量)迭加的平行四边形法则,电磁波(即光波)的速度如果在惯性系A 中是c ,那么,在相对于A 以速度v运动的另一个惯性系B 中,就不应再是c 了,而应是c+v或c-v。但是,麦克斯韦电磁理论说光速只能是c ,不能是c+v或c-v。
那么,爱因斯坦意识到,一定有什么地方出错了。
下面的三条理论,肯定有某一条是错误的了。
(1). 麦克斯韦电磁理论,它要求光速只能是常数c;
(2). 相对性原理,它要求包括电磁理论在内的所有物理规律在一切惯性系中都相同;
(3). 伽利略变换,作为三维空间矢量迭加原理的平行四边形法则。这一点后来看来不满足四维的相对论,但对于一个四维矢量,这个平行四边形法则是否能继续使用呢?四维速度还能按照这个法则合成吗?粗劣地说,数学家哈密顿曾经研究四元数,用了10年的时间,才知道,四元数是不满足交换律的,也就是说,对一个四维矢量,AB不等于BA,这样,平行四边形法则是不成立了。四元数空间实际上和单位矩阵和pauli矩阵空间是同构的,但矩阵不满足交换律。细致地说,单位四元数是一个四维空间的三维球面,而三维球面正好是SU(2)李群。pauli矩阵恰好是SU(2)李群的李代数的基。在这里依稀可以看到,洛伦兹群和su(2)群有了某种莫名的关系。这个关系就是旋量。
爱因斯坦想的没有那么细致,但他认定,第(3)条是错的,在光速不变原理和相对性原理的基础上,他推出了两个惯性系之间的坐标变换关系,这个关系就是洛伦兹等人早已得出的变换公式。 不过, 爱因斯坦是在不知道洛伦兹等人的工作的情况下,独立推出这一公式的。更重要的是,爱因斯坦对该变换的解释与洛伦兹完全不同,时代证明,在物理解释上,爱因斯坦是正确的。于是,一个被巩固了地位的狭义相对性原理出场了:“所有的惯性参考系中,物理规律是一样的。”
狭义相对论的背景时空是Minkowski平坦时空。相对性原理导致了朗之万提出Twins悖论。这个提法简洁明了,使得哲学家再次被惊醒了,学术非常之争鸣。哲学家亨利.伯格森后来承认,朗之万1911年4 月的演讲,“第一次唤起了我对爱因斯坦观念的注意”。
双生子悖论使人困惑。劳厄1911年写信告诉爱因斯坦,反对相对论的共同理由“主要是时间相对性和由此产生的悖论”。
劳厄在1912年写的世界上第一部相对论教科书中说:这些悖论和其它有关时间相对性问题具有“伟大的哲学意义”。
附带地说,第一,当年的Twins悖论具有非凡的影响力,它极大地推动了狭义相对论思想在民间的传播;第二,在早期,写作相对论的文章的人中,有一个研究生,他是W.pauli,他的文章后来出了一本书,这个人后来在量子力学领域相当杰出,其批评意见无比尖锐刻薄,被称为“上帝的鞭子”。
Twins悖论的基本意思是说:在地球上有一对可爱的双胞胎姐妹,有一天,姐姐坐了极快速的航天飞机,去外太空去旅游了一番。等她回来,发现妹妹已经是人老珠黄,昭华已逝……而自己依然是貌美如花。既然相对论说,时间是相对的,那为什么会出现这样天上三日,地上三年的事情呢?现代的几何语言给出了一个解释:因为妹妹和姐姐的世界线不一样,妹妹的世界线是Minkowski时空里的测地线,而姐姐穿越大气层再回来她肯定不是惯性运动所以她的世界线不是测地线。而世界线的长度表示生命的固有时间流动。
天地者万物之逆旅,光阴者百代之过客。
当李白把时间和空间分离开来理解的时候,他没有想到的是,把时间和空间结合起来理解,具有非凡的快感。往来成古今,26岁的爱因斯坦,用他深邃的眼眸照亮了黑暗的时空。