图像分类
机器不学习我学习
CSDN人工智能领域优质创作者,CSDN博客专家,阿里云专家博主,阿里云技术博主,有机器学习、深度学习、OCR识别项目4年以上工作经验,【AIexplore】创始人,专注于人工智能技术领域。
展开
-
【CV】top-1错误率、top-5正确率
top1-----就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确。否则预测错误top5-----就是最后概率向量最大的前五名中,只要出现了正确概率即为预测正确。否则预测错误。参考https://blog.csdn.net/ha010/article/details/80742906https://blog.csdn.net/joe_zitangni/article/details/70657674?utm_medium=dist原创 2020-08-24 10:28:03 · 620 阅读 · 0 评论 -
【论文笔记】DenseNet研读
论文翻译:https://zhuanlan.zhihu.com/p/31647627原创 2020-12-30 13:59:51 · 210 阅读 · 0 评论 -
【综述】深度学习之图像分类网络实战蓝皮书
旨在打造全网最详细、最系统的图像分类教程,希望各位朋友多多支持,感谢订阅!原创 2020-12-30 10:01:10 · 965 阅读 · 1 评论 -
【CV】什么是k-crop?(1-crop,10-crop)
今天在看Resnet论文的时候,看到Table 2 里有10-crop testing,因为不懂,所以查找资料。现对其进行总结:1-crop和10-crop顾名思义就是进行1次和10次裁剪。举个例子输入图像是256×256的,网络训练所需图像是224×224的。1-corp是从256×256图像中间位置裁一个224×224的图像进行训练,而10-corp是先从中间裁一个224×224的图像,然后从图像左上角开始,横着数224个像素,竖着数224个像素开始裁剪,同样的方法在右上,左下,右下各裁剪一次。原创 2020-12-29 16:27:04 · 1544 阅读 · 1 评论 -
【论文笔记】ResNet研读
写的比较好的文章https://zhuanlan.zhihu.com/p/42410305https://zhuanlan.zhihu.com/p/268308900https://zhuanlan.zhihu.com/p/28124810原创 2020-12-29 15:14:31 · 305 阅读 · 0 评论 -
【DL】什么是dropout
1. 什么是dropout 【随机失活】dropout是2012年深度学习视觉领域的开山之作paper:《ImageNet Classification with Deep Convolutional》【Alexnet】所提到的算法,用于防止过拟合。基本思想:dropout是指在深度学习网络训练的过程中,对于神经网络单元,按照一定的概率p将其暂时从网络中丢弃,对于随机梯度下降算法来说,由于是随机丢弃,所以每个mini-batch都在训练不同的网络。注:dropout效果跟bagging效果类似(原创 2020-12-23 10:27:14 · 1275 阅读 · 0 评论 -
【CV】什么是注意力机制
注意力机制(Attention Mechanism)是机器学习中的一种数据处理方法,广泛应用在自然语言处理、图像识别及语音识别等各种不同类型的机器学习任务中。一、注意力机制为什么有必要存在?我们不难发现,注意力这个词本来是属于人类才有的动作。也就是说,注意力机制可以看做是一种仿生,是机器通过对人类阅读、听说中的注意力行为进行模拟。那为何要对注意力进行仿生呢?按理说,计算机理应拥有无限的记忆力和注意力,这不是一件好事么?为什么我们特意对计算机进行“劣化”来模拟这一项机制呢?这是因为,人脑在进行阅读任原创 2020-12-17 10:43:04 · 1224 阅读 · 0 评论 -
【DL】常见深度学习框架总结
很难说哪个深度学习框架更好(只有更流行的)。开发caffe的贾清扬被阿里从Facebook挖跑了,贾清扬应该是在Facebook开发出来caffe2没多长时间,貌似至少是在Facebook里,pytorch把caffe干趴下了。去年google在上海的开发者大会强推了Eager Execution动态计算图,而pytorch一开始就是动态设计的。感觉tf无论是做动态计算还是整合keras作高级api,好像都是做修补工作,貌似tf的底层很混乱的样子,但奈何谷歌财大气粗,大力推广tf。保险起见,精力允.原创 2020-11-10 17:41:11 · 1134 阅读 · 0 评论 -
【ML】准确率(Accuracy)、精确率(Precision)、召回率(Recall)等
真实标签(下) 预测标签(右)PositiveNegativePositiveTPFNNegativeFPTNTP:正样本被预测为正样本的个数FP:负样本被预测为正样本的个数TN:负样本被预测为负样本的个数FN:正样本被预测为负样本的个数TP+FP:被预测为正样本的个数FN+TN:被预测为负样本的个数TP+FN:真实正样本的个数FP+TN:真实负样本的个数TP+TN+FP+FN:正负样本个数准确率:Accuracy=TP+TNTP+TN+FP+...原创 2020-11-16 10:19:06 · 1160 阅读 · 0 评论 -
【CV】图像分类中的max pooling和average pooling区别
参考:知乎:https://www.zhihu.com/question/23437871https://blog.csdn.net/u012193416/article/details/79432668https://blog.csdn.net/qq_24502469/article/details/105119579原创 2020-11-13 13:45:59 · 2618 阅读 · 1 评论 -
Pytorch下微调网络模型(迁移学习)进行图像分类
Pytorch下微调网络模型进行图像分类利用ImageNet下的预训练权重采用迁移学习策略,能够实现模型快速训练,提高图像分类性能。下面以vgg和resnet网络模型为例,微调最后的分类层进行分类。注意,微调只对分类层(也就是全连接层)的参数进行更新,前面的参数需要被冻结。(1)微调VGG模型进行图像分类(以vgg16为例)import torchimport torch.nn as nnimport torchvision.models as modelsclasses_num = 200原创 2020-09-16 16:24:19 · 1547 阅读 · 0 评论 -
【论文笔记】VGG-2014-研读
论文翻译vgg如果上述链接失效,在这里寻找http://noahsnail.com论文总结:https://my.oschina.net/u/876354/blog/1634322https://www.cnblogs.com/itmorn/p/11217196.html原创 2020-09-10 17:29:37 · 216 阅读 · 0 评论 -
【论文笔记】GoogLeNet-2014-研读
论文翻译:inception v1-论文翻译论文总结https://zhuanlan.zhihu.com/p/73857137面试总结https://www.cnblogs.com/itmorn/p/11230388.htmlv1到v4总结https://www.cnblogs.com/dengshunge/p/10808191.html原创 2020-09-10 16:59:06 · 193 阅读 · 0 评论 -
【论文笔记】AlexNet研读
论文翻译:https://www.jianshu.com/p/ea922866e3behttps://github.com/SnailTyan/deep-learning-papers-translationhttps://zhuanlan.zhihu.com/p/80087776卷积计算总结CNN卷积的计算以AlexNet为例https://www.jianshu.com/p/3d3a653b14fa原创 2020-09-09 14:23:19 · 309 阅读 · 0 评论 -
从实例掌握 pytorch 进行图像分类
写的很好的文章http://spytensor.com/index.php/archives/21/原创 2020-09-07 14:35:11 · 205 阅读 · 0 评论 -
为什么深度学习图像分类的输入多是224*224
摘抄自:https://zhuanlan.zhihu.com/p/58188430仅用来个人学习和分享原创 2020-09-04 14:43:20 · 496 阅读 · 0 评论 -
【CV】图像分类中的细粒度/粗粒度怎么理解
粗粒度图像分类:类别之间差异大,比如人、汽车、树细粒度图像分类:类别之间差异小,比如200种鸟的分类、100种花的分类由于细粒度类别属于同一个大类,所以各类别之间的差距很小,这些细微的差距容易被光照、颜色、背景、形状和位置等变化因素覆盖,导致细粒度图像分类相对困难。参考:http://www.cjig.cn/html/jig/2016/9/20160904.htm参考论文链接...原创 2020-09-04 11:25:23 · 6107 阅读 · 2 评论