CV面试
机器不学习我学习
CSDN人工智能领域优质创作者,CSDN博客专家,阿里云专家博主,阿里云技术博主,有机器学习、深度学习、OCR识别项目4年以上工作经验,【AIexplore】创始人,专注于人工智能技术领域。
展开
-
【CV】请问卷积核(滤波器)3*3、5*5、7*7、11*11 都是具体什么数?
答卷积神经网络中,第一次给卷积核的值就是随机的,前向传播过程中,神经网络会得出loss,一般第一次随机给的数得到的loss都比较高,然后神经网络根据误差反算更新卷积核的数,然后再次前向。问请问卷积核(滤波器)3。11都是具体什么数?......原创 2022-07-27 16:36:51 · 826 阅读 · 0 评论 -
【CV面试】智力题:一个500毫升的容器和一个300毫升的容器,怎样才能量出400毫升水?
1、一个500毫升的容器和一个300毫升的容器,怎样才能量出400毫升水?(容器上没有刻度)解答: 先用300毫升容器量300毫升的水,然后倒入500毫升容器中,然后再用300毫升容器量300毫升水,然后将500毫升容器装满,这时300毫升容器中还有100毫升的水,这时可以将500毫升容器中的水全部倒出,再将300毫升容器中剩余的100毫升水倒入500毫升的容器中,然后再用300毫升的容器量取300毫升的水倒入500毫升的容器中,这时500毫升的容器中剩余的就是400毫升的水。还有一些类似的题目:用一个原创 2022-03-17 15:41:09 · 2235 阅读 · 0 评论 -
【python】python字符串中插入字符
废话不多说,直接上demo。s1 = "2021.12.2415:28:00"t1 = list(s1)t1.insert(1,'e') # 1的位置插入'e's1_new = ''.join(t1) # 连接起来print(s1_new)'2e021.12.2415:28:00's2 = "2021.12.2415:28:00"t2 = list(s2)t2.insert(10,' ') # 10的位置插入' '空格s2_new = ''.join(t2) # 连接起来pri原创 2021-12-24 13:58:28 · 8520 阅读 · 0 评论 -
【python】python中(正向、反向)切割字符串
Talk is cheap, show me code.str.split(delim=None, maxsplit=-1)s1 = "你好,我是cs,请问你在家吗?"# 以,逗号【英文逗号】分割s1字符串s1_new = s1.split(',')print(s1_new )['你好', '我是cs', '请问你在家吗?']# 以,逗号【英文逗号】分割s1字符串 只分割一次s2_new = s1.split(',',1)print(s2_new )['你好', '我是cs,请问你原创 2021-12-24 13:48:57 · 2158 阅读 · 0 评论 -
【综述】机器学习实战蓝皮书
微信公众号:AIexplore原创 2021-12-23 11:17:34 · 1195 阅读 · 9 评论 -
【CV】几何失真和光度失真
几何失真和光度失真是两种最常用的数据增强方法。对于几何失真,可以对图像进行随机缩放,裁剪,翻转,旋转等。此外,还有一种数据增强方法是模拟遮挡,即用一个物体覆盖另一个物体的一部分。对于光度失真,可以调整图像的亮度,色度,对比度,饱和度,以及加入噪点;参考https://blog.csdn.net/hxxjxw/article/details/117604723...原创 2021-11-03 10:05:30 · 633 阅读 · 0 评论 -
【CV】python中PIL.Image和OpenCV图像格式相互转换
1、PIL.Image转换成opencv格式:import cv2from PIL import Imageimport numpy as np image = Image.open("car.jpg")# image.show()img = cv2.cvtColor(np.asarray(image),cv2.COLOR_RGB2BGR)# cv2.imshow("image",img)# cv2.waitKey()2、opencv转换成PIL.Image格式:import cv2原创 2021-10-13 14:18:18 · 2257 阅读 · 0 评论 -
【CV】concat和add的不同
DenseNet和Inception中更多采用的是concatenate操作,而ResNet更多采用的add操作。concatenate为横向或纵向空间上的叠加,而add为简单的像素叠加。参考:https://blog.csdn.net/qq_32256033/article/details/89516738https://blog.csdn.net/weixin_39610043/article/details/87103358https://blog.csdn.net/u012193416/a原创 2021-08-30 09:30:16 · 530 阅读 · 0 评论 -
【CV】resize和crop的区别
https://www.cnblogs.com/gcgc/p/11343919.htmlhttps://www.cnblogs.com/wemo/p/10393774.html原创 2021-06-18 11:04:56 · 1591 阅读 · 0 评论 -
【CV】VGG卷积核为什么取3*3 ? VGG使用3*3卷积核的优势是什么?
在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。比如,3个步长为1的3x3卷积核的一层层叠加作用可看成一个大小为7的感受野(其实就表示3个3x3连续卷积相当于一个7x7卷积),其参数总量为 3x(9xC^2) ,如果直接使用7x7卷积核,其参数总量为 49xC^2 ,这里 C 指的是输入和输出的通道数。很明显,27xC2小于49xC2,即减少了参数;而且3x3原创 2021-06-01 10:04:33 · 2492 阅读 · 0 评论 -
【CV】Anchor-based 与 Anchor-free 优缺点
参考https://blog.csdn.net/ytusdc/article/details/107864527https://www.zhihu.com/question/356551927/answer/926659692https://zhuanlan.zhihu.com/p/76710711原创 2021-06-01 09:49:20 · 652 阅读 · 0 评论 -
【论文笔记】EfficientDet研读
paper地址:https://arxiv.org/abs/1911.09070官方代码:https://github.com/google/automl一系列大佬复现:https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object原创 2021-06-01 09:12:52 · 157 阅读 · 0 评论 -
【linux】在关闭终端的情况下,训练模型
当我们需要关闭终端,后台训练模型时:nohup python train.py & # 后台运行,直到训练结束实时查看:tail -f nohup.out查看python进程ps -ef|grep pythonkill -9 id # 杀死进程killall -9 python # 杀死所有python进程参考https://blog.csdn.net/xuqimm/article/details/78092002...原创 2021-05-24 17:06:13 · 1471 阅读 · 0 评论 -
【CV】图像分类、目标检测、语义分割、实例分割、全景分割
1. 图像分类(image classification)图像分类就是识别图像中存在的内容,对图像判断出所属的分类。如下图,有人(person)、树(tree)、草地(grass)、天空(sky),只知道有没有这一类东西就行。2. 目标检测(object detection)识别图像中存在的内容和检测其位置,如下图,以识别和检测人(person)为例。可以分开不同的人并给出位置,但不能给出准确的与之对应的像素,也不用检测处图像中所有的类型。3. 语义分割(semantic segmentati原创 2021-01-05 14:08:26 · 1371 阅读 · 5 评论 -
【ML】随机森林(Random Forest,RF)
1. 随机森林的概念Q:什么是随机森林?A:随机森林是一个包含多个决策树的分类器,由很多决策树构成,不同的决策树之间没有关联。当我们进行分类任务时,森林中的每一棵决策树都会分别对样本进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。 (即,少树服从多树)。看起来是不是很简单呢?但是这里有一个问题,那就是随机森林中有多个决策树,那么,我们如何用已有的数据集去构建这么多的决策树呢?首先,要明白,决策树是不同的,那么训练决策树所原创 2021-01-05 11:42:30 · 492 阅读 · 0 评论 -
【ML】决策树--剪枝处理(预剪枝、后剪枝)
剪枝有两种方案:预剪枝(prepruning)后剪枝(post-pruning)7.1. 预剪枝(prepruning)预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划分并将当前结点标记为叶结点。用通俗的话来说,就是如果进行划分能够带来更好的结果就进行划分,否则不进行划分。首先,我们定义一个训练集和一个验证集如下:(西瓜书中间的例子)上面一部分是训练集,下面一部分是测试集。然后让我们来对训练集(记住是训练集)进行划分,划分的规原创 2021-01-05 10:37:01 · 5354 阅读 · 1 评论 -
【目标检测】YOLO v4论文
YOLOv4实战尝鲜 — 教你从零开始训练自己的数据集(安全头盔佩戴识别检测)https://blog.csdn.net/c2250645962/article/details/106064832原创 2021-01-04 16:33:35 · 262 阅读 · 0 评论 -
【论文笔记】EfficientNet研读
论文理解:https://blog.csdn.net/u014380165/article/details/90812249https://zhuanlan.zhihu.com/p/96773680原创 2021-01-04 16:28:25 · 159 阅读 · 0 评论 -
【论文笔记】SENet研读
论文理解:https://zhuanlan.zhihu.com/p/65459972/原创 2021-01-04 16:22:36 · 322 阅读 · 0 评论 -
【论文笔记】Fully Convolutional Networks for Semantic Segmentation
论文翻译:https://www.cnblogs.com/xuanxufeng/p/6249834.html论文解读:https://zhuanlan.zhihu.com/p/32037333原创 2021-01-04 11:50:55 · 171 阅读 · 0 评论 -
机器学习:k-means算法(算法原理、k如何选择、初始点选择、优缺点)
k-means算法是无监督学习算法(非监督学习算法)。1.聚类聚类分析是没有划分类别的情况下,根据样本相似度进行样本分组的一种方法分监督学习算法。聚类的输入是一组未被标记的样本,聚类根据自身的距离或者相似度划分为若干组,划分的原则是组内距离最小化,而组间距离最大化。2.k-meansk-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中k个类,且每个类的...原创 2019-10-03 16:45:22 · 7715 阅读 · 0 评论 -
【论文笔记】GoogLeNet-2014-研读
论文翻译:inception v1-论文翻译论文总结https://zhuanlan.zhihu.com/p/73857137面试总结https://www.cnblogs.com/itmorn/p/11230388.htmlv1到v4总结https://www.cnblogs.com/dengshunge/p/10808191.html原创 2020-09-10 16:59:06 · 193 阅读 · 0 评论 -
【论文笔记】AlexNet研读
论文翻译:https://www.jianshu.com/p/ea922866e3behttps://github.com/SnailTyan/deep-learning-papers-translationhttps://zhuanlan.zhihu.com/p/80087776卷积计算总结CNN卷积的计算以AlexNet为例https://www.jianshu.com/p/3d3a653b14fa原创 2020-09-09 14:23:19 · 309 阅读 · 0 评论 -
【论文笔记】DenseNet研读
论文翻译:https://zhuanlan.zhihu.com/p/31647627原创 2020-12-30 13:59:51 · 210 阅读 · 0 评论 -
【综述】深度学习之图像分类网络实战蓝皮书
旨在打造全网最详细、最系统的图像分类教程,希望各位朋友多多支持,感谢订阅!原创 2020-12-30 10:01:10 · 965 阅读 · 1 评论 -
【CV】什么是k-crop?(1-crop,10-crop)
今天在看Resnet论文的时候,看到Table 2 里有10-crop testing,因为不懂,所以查找资料。现对其进行总结:1-crop和10-crop顾名思义就是进行1次和10次裁剪。举个例子输入图像是256×256的,网络训练所需图像是224×224的。1-corp是从256×256图像中间位置裁一个224×224的图像进行训练,而10-corp是先从中间裁一个224×224的图像,然后从图像左上角开始,横着数224个像素,竖着数224个像素开始裁剪,同样的方法在右上,左下,右下各裁剪一次。原创 2020-12-29 16:27:04 · 1544 阅读 · 1 评论 -
【论文笔记】ResNet研读
写的比较好的文章https://zhuanlan.zhihu.com/p/42410305https://zhuanlan.zhihu.com/p/268308900https://zhuanlan.zhihu.com/p/28124810原创 2020-12-29 15:14:31 · 305 阅读 · 0 评论 -
【论文笔记】VGG-2014-研读
论文翻译vgg如果上述链接失效,在这里寻找http://noahsnail.com论文总结:https://my.oschina.net/u/876354/blog/1634322https://www.cnblogs.com/itmorn/p/11217196.html原创 2020-09-10 17:29:37 · 216 阅读 · 0 评论 -
【ML】决策树的构建(根据信息增益、增益率、基尼指数)
1. 决策树介绍决策树【Decision Tree,DT】是一类较为常见的「机器学习」方法,DT既可以作为分类算法,也可以作为回归算法。举个分类的例子:在相亲的时候,找对象的顺序应该是:Q:性别要求?A:不是女的不要。Q:年龄要求?A:大于我5岁的不要。Q:专业要求?A:非计算机专业的不要?…为了更好的表示上面的这些问题,我们将其画成一张树状图:上面的这棵树就是我们找对象的决策过程,圆角矩形代表了判断条件,椭圆代表了决策结果。通过性别、年龄和专业这几个属性,最终,得出最后的决策。原创 2020-12-28 14:15:01 · 2038 阅读 · 0 评论 -
【DL】什么是dropout
1. 什么是dropout 【随机失活】dropout是2012年深度学习视觉领域的开山之作paper:《ImageNet Classification with Deep Convolutional》【Alexnet】所提到的算法,用于防止过拟合。基本思想:dropout是指在深度学习网络训练的过程中,对于神经网络单元,按照一定的概率p将其暂时从网络中丢弃,对于随机梯度下降算法来说,由于是随机丢弃,所以每个mini-batch都在训练不同的网络。注:dropout效果跟bagging效果类似(原创 2020-12-23 10:27:14 · 1275 阅读 · 0 评论 -
【Linux】linux中查看进程的4种方法
进程是CPU及内存中运行的程序代码,而每个进程可以创建一个或者多个进程(父子进程)。查看进程的方法:第1种:ps auxps命令用于报告当前系统的进程状态。可以搭配kill指令随时中断、删除不必要的程序。ps命令是最基本同时也是非常强大的进程查看命令,使用该命令可以确定有哪些进程正在运行和运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等等,总之大部分信息都是可以通过执行该命令得到的。a: 显示当前终端下的所有进程信息,包括其他用户的进程。u: 使用以用户为主的格式输出进原创 2020-11-12 11:15:13 · 3118 阅读 · 0 评论 -
【ML】什么是数据标准化和归一化?应用场景是什么?
最近在为找工作备战,看了很多博客,总结机器学习中一些基础的知识。什么是数据的标准化和归一化?在CSDN和知乎上有很多大佬做出了回答,看了有的人的回答,感觉会把自己气晕,完全是浪费时间并且误人子弟。...原创 2020-12-21 15:20:30 · 2045 阅读 · 0 评论 -
【Python】list和tuple的区别
1. list(列表)list是一种有序的集合,可以随时对集合进行添加、删除和插入操作。1.1. list中的元素,索引从0开始,0为第一个元素,当索引超出范围(本例索引大于5时,总共有6个元素,索引为0,1,2,3,4,5)会报错,索引不能越界,最后一个元素的索引是len(num)-11.2. 如果要取最后一个元素,除了计算索引位置,还可以用-1做索引直接取到最后一个元素(倒数第一)当然,取倒数第二个和倒数第三个索引分别为-2,-3,以此类推1.3. 使用append()可以在lis原创 2020-12-21 09:41:21 · 2664 阅读 · 0 评论 -
【CV】计算机视觉中low level feature和high level feature的理解
Low-level feature: 通常是指图像中的一些小的细节信息,例如边缘(edge),角(corner),颜色(color),像素(pixeles), 梯度(gradients)等,这些信息可以通过滤波器、SIFT或HOG获取;==High level feature:==是建立在low level feature之上的,可以用于图像中目标或物体形状的识别和检测,具有更丰富的语义信息。通常卷积神经网络中都会使用这两种类型的features: 卷积神经网络的前几层学习low level featu原创 2020-08-21 13:27:59 · 2056 阅读 · 0 评论 -
【CV】图像分类中的细粒度/粗粒度怎么理解
粗粒度图像分类:类别之间差异大,比如人、汽车、树细粒度图像分类:类别之间差异小,比如200种鸟的分类、100种花的分类由于细粒度类别属于同一个大类,所以各类别之间的差距很小,这些细微的差距容易被光照、颜色、背景、形状和位置等变化因素覆盖,导致细粒度图像分类相对困难。参考:http://www.cjig.cn/html/jig/2016/9/20160904.htm参考论文链接...原创 2020-09-04 11:25:23 · 6107 阅读 · 2 评论 -
【ML】贝叶斯分类和朴素贝叶斯分类
一、介绍贝叶斯定理是英国数学家托马斯·贝叶斯提出的,为了解决一个“逆概率”问题。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。贝叶斯算法和决策树、SVM 一样,是分类算法。用来衡量标签和特征之间的概率关系,属于有监督学习算法。因为贝叶斯是基于概率论的算法,了解算法之前,需要了解概率论的几个概念:联合概率:A事件和B事件同时发生的概率,P(AB)或者P(A,B)、P(A∩B)条件概率:P(B|A):原创 2020-12-18 16:56:46 · 850 阅读 · 0 评论 -
【ML】什么是参数模型和非参数模型
第一次接触这个概念是在总结LR和SVM之间的区别的时候,LR是参数模型,SVM是非参数模型。今天来总结一下参数模型和非参数模型。一、前言参数模型(parametric model)和非参数模型(non-parametric model)作为数理统计学中的概念,现在也常用于机器学习领域。在统计学中,参数模型通常假设总体(样本、数据、随机变量)服从某个分布,这个分布可以由一些参数确定,如正态分布由均值(0)和方差(1)[此时,标准差也为1]确定,在此基础上构建的模型称为参数模型;非参数模型对于总体的数原创 2020-12-18 11:20:11 · 4195 阅读 · 2 评论 -
【ML】LR和SVM的联系和区别
参考https://mp.weixin.qq.com/s/ZaJLftMDnOG4TGmkQ8Hjgwhttps://mp.weixin.qq.com/s/zc8Qk0FCSOJvX2QvfsK8kghttps://mp.weixin.qq.com/s/I6xbn8gy0e8yA0pwu4SlMwhttps://mp.weixin.qq.com/s/WUeAaXKjiPXnhTHhC2eBSQ原创 2020-12-17 18:14:22 · 356 阅读 · 0 评论 -
【ML】线性分类器和非线性分类器的区别
Q:什么是分类器?A:就是用来把输入的数据进行分类的模型(本质上是函数)。图1,黑色的曲线就是非线性分类器。以曲线的形式分类了红点和蓝点。图2,黑色的直线就是线性分类器。以直线的形式分类红点和蓝点。一、线性分类器以上图的二分类(红点和蓝点)为例:线性分类器就是用一个“超平面”将两个样本隔离开,如:(1)二维平面上的两个样本用一条直线来进行分类;(2)三维立体空间内的两个样本用一个平面来进行分类(如下图);(3)N维空间内的两个样本用一个超平面来进行分类。常见的线性分类器有:LR,贝叶原创 2020-12-17 17:08:30 · 2788 阅读 · 0 评论 -
【CV】什么是注意力机制
注意力机制(Attention Mechanism)是机器学习中的一种数据处理方法,广泛应用在自然语言处理、图像识别及语音识别等各种不同类型的机器学习任务中。一、注意力机制为什么有必要存在?我们不难发现,注意力这个词本来是属于人类才有的动作。也就是说,注意力机制可以看做是一种仿生,是机器通过对人类阅读、听说中的注意力行为进行模拟。那为何要对注意力进行仿生呢?按理说,计算机理应拥有无限的记忆力和注意力,这不是一件好事么?为什么我们特意对计算机进行“劣化”来模拟这一项机制呢?这是因为,人脑在进行阅读任原创 2020-12-17 10:43:04 · 1224 阅读 · 0 评论