深度学习
文章平均质量分 70
机器不学习我学习
CSDN人工智能领域优质创作者,CSDN博客专家,阿里云专家博主,阿里云技术博主,有机器学习、深度学习、OCR识别项目4年以上工作经验,【AIexplore】创始人,专注于人工智能技术领域。
展开
-
【图像分类】基于计算机视觉的坑洼道路检测和识别(2个类别)
【图像分类】基于计算机视觉的坑洼道路检测和识别(2个类别)原创 2023-10-29 21:32:57 · 2749 阅读 · 1 评论 -
【图像分类】钢轨表面缺陷分类数据集介绍(4个类别)
钢轨表面缺陷分类数据集介绍(4个类别),用于图像分类任务原创 2023-10-29 17:27:42 · 2528 阅读 · 4 评论 -
【表面缺陷检测】钢轨表面缺陷检测数据集介绍(2类,含xml标签文件)
【表面缺陷检测】钢轨表面缺陷检测数据集介绍(2类,含xml标签文件)原创 2023-10-27 10:03:09 · 1530 阅读 · 1 评论 -
【表面缺陷检测】铝型材表面缺陷检测数据集介绍(含xml标签文件)
【表面缺陷检测】铝型材表面缺陷检测数据集介绍(含xml标签文件)原创 2023-10-26 17:35:43 · 2473 阅读 · 0 评论 -
【综述】深度学习之目标检测实战蓝皮书
深度学习之目标检测实战蓝皮书,专栏的目标是涵盖各个领域的目标检测实战,以实战为导向,先上手后学习,持续推进。原创 2020-09-07 15:17:14 · 1353 阅读 · 3 评论 -
【DL】linux服务器上安装Anaconda3
linux服务器上安装Anaconda3原创 2022-11-18 11:28:45 · 600 阅读 · 0 评论 -
【DL】CUDA所有版本、CUDNN所有版本下载地址、CUDA版本和CUDNN版本对应关系
CUD所有版本、CUDNN所有版本下载地址、CUDA版本和CUDNN版本对应关系原创 2022-11-18 10:37:54 · 2975 阅读 · 0 评论 -
FutureWarning: Passing (type, 1) or ‘1type‘ as a synonym of type is deprecated; in a future version
import tensorflow出现一堆乱七八糟的东西/home/ubuntu/anaconda3/envs/ztf/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:526: FutureWarning: Passing (type, 1) or ‘1type’ as a synonym of type is deprecated; in a future version of numpy, it will be un原创 2020-10-14 10:02:09 · 662 阅读 · 0 评论 -
Tensorflow框架搭建卷积神经网络进行五种花的分类
数据集:五种花:daisy、dandelion、roses、sunflowers、tulips数据集下载:http://download.tensorflow.org/example_images/flower_photos.tgz读取并随机打乱数据集: read_img.py# -*- coding: utf-8 -*-"""Created on Wed Jun 26 09:23:...原创 2019-06-29 16:06:21 · 6037 阅读 · 17 评论 -
os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘
tf框架: os.environ[“TF_CPP_MIN_LOG_LEVEL”]的取值有4个:0,1,2,3,分别和log的四个等级挂钩:INFO,WARNING,ERROR,FATAL (重要性由左到右递增)当os.environ["TF_CPP_MIN_LOG_LEVEL"]=0的时候,输出信息:INFO + WARNING + ERROR + FATAL当os.environ["TF_CPP_MIN_LOG_LEVEL"]=1的时候,输出信息:WARNING + ERROR + FATA原创 2020-07-21 10:21:52 · 1820 阅读 · 0 评论 -
【DL】关于tensor(张量)的介绍和理解
在深度学习中,我们肯定会遇到一个名词张量(tensor)。对于一维、二维我们比较好理解,但是三维、四维、…、n维,我们该如何理解呢?下面我们将以pytorch深度学习框架为例进行详细介绍。原创 2022-07-27 14:28:16 · 1368 阅读 · 1 评论 -
【pytorch】反卷积中输出尺寸计算公式
pytorch框架下的反卷积:nn.ConvTranspose2d( in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1,原创 2021-04-27 14:05:21 · 1710 阅读 · 0 评论 -
【pytorch】DCGAN代码实现
main.pyfrom __future__ import print_functionimport argparseimport osimport randomimport torchimport torch.nn as nnimport torch.nn.parallelimport torch.backends.cudnn as cudnnimport torch.optim as optimimport torch.utils.dataimport torchvision.d原创 2021-04-22 13:22:42 · 1201 阅读 · 2 评论 -
【DL】Keras框架调用多个GPU并行训练,并保存模型
参考keras中文文档https://keras.io/zh/models/model/https://www.jianshu.com/p/4203a6435ab5https://blog.csdn.net/u012862372/article/details/80367607https://blog.csdn.net/ywcpig/article/details/105659637原创 2021-01-27 16:52:39 · 1020 阅读 · 1 评论 -
【CV】图像分类、目标检测、语义分割、实例分割、全景分割
1. 图像分类(image classification)图像分类就是识别图像中存在的内容,对图像判断出所属的分类。如下图,有人(person)、树(tree)、草地(grass)、天空(sky),只知道有没有这一类东西就行。2. 目标检测(object detection)识别图像中存在的内容和检测其位置,如下图,以识别和检测人(person)为例。可以分开不同的人并给出位置,但不能给出准确的与之对应的像素,也不用检测处图像中所有的类型。3. 语义分割(semantic segmentati原创 2021-01-05 14:08:26 · 1371 阅读 · 5 评论 -
【DL】常见优化算法的优缺点
图:来源于网络。一、什么是优化算法模型内部有些参数,是用来计算测试集的真实值和预测值的偏差程度,基于这些参数,就形成了损失函数L(x)。我们需要通过优化算法来优化损失函数L(x),使其最小化(或最大化)。比如说,权重(W)和偏差(b)就是这样的模型内部参数,通过优化算法来更新W和b,使得损失达到最小,参数逼近或达到最优值。二、优化算法分为两大类2.1. 一阶优化算法这种算法使用各个参数的梯度值来最小化(或最大化)损失函数L(x)。最常用的一阶优化算法是梯度下降。函数梯度:导数dydx\..原创 2020-12-11 18:20:44 · 5756 阅读 · 0 评论 -
【DL】常见深度学习框架总结
很难说哪个深度学习框架更好(只有更流行的)。开发caffe的贾清扬被阿里从Facebook挖跑了,贾清扬应该是在Facebook开发出来caffe2没多长时间,貌似至少是在Facebook里,pytorch把caffe干趴下了。去年google在上海的开发者大会强推了Eager Execution动态计算图,而pytorch一开始就是动态设计的。感觉tf无论是做动态计算还是整合keras作高级api,好像都是做修补工作,貌似tf的底层很混乱的样子,但奈何谷歌财大气粗,大力推广tf。保险起见,精力允.原创 2020-11-10 17:41:11 · 1134 阅读 · 0 评论 -
如何理解一张RGB图片经过卷积神经网络后通道数增加
https://blog.csdn.net/briblue/article/details/83063170https://blog.csdn.net/cpluss/article/details/81709998https://www.jianshu.com/p/1ea2949c0056原创 2020-08-07 14:59:12 · 4371 阅读 · 0 评论 -
Keras:VGG16模型微调
一、介绍当我们的数据集较小,只有几百几千张图片的时候,我们很难在一个新的网络结构上训练出具有很高准确率的模型,为此我们需要借助预训练网络模型(即已经训练好的网络模型,如VGG16)。我们利用自己的数据集来重新训练这些模型的分类层,就可以获得比较高的准确率。目前大部分的卷积神经网络都分为两部分,第一部分由卷积层、池化层组成的卷积基部分,主要用于特征提取;第二部分是由全连接神经网络组成的分类器,主要用于图像分类。当然,目前大部分网络逐渐使用GlobalAveragePooling代替全连接层进行分类,但我们原创 2020-07-23 09:43:22 · 3150 阅读 · 0 评论 -
Pytorch实现猫狗大战(二)
上一篇博客中,介绍了数据集的下载,现在开始下一个阶段,撸代码啦。(注:发现github上一处可以数据,并且有代码,不过库函数更新的太快啦,有时候download的项目是不能直接跑起来的,所以我们需要进行微调。https://github.com/maples1993/Cats_vs_Dogs)我们下载得到的数据集如下:下载得到的数据,有2个压缩包,我们将他们进行解压,得到test1文件夹和t...原创 2019-06-25 21:59:17 · 6247 阅读 · 1 评论 -
Pytorch实现猫狗大战(四)
第二张运行和测试的方法: run_code.py只是运行过程存的变量不同# -*- coding: utf-8 -*-"""Created on Mon Jun 24 15:02:14 2019@author: ZQQ"""import torchimport torchvisionfrom torchvision import datasets,transforms, mo...原创 2019-06-27 22:23:57 · 2960 阅读 · 3 评论 -
卷积神经网络CNN中FLOPs的概念和计算
1.什么是FLOPs?FLOPs全称:floating point operation per second意思是每秒浮点运算次数,理解为计算速度,是一个用来衡量硬件计算性能的指标。在CNN中用来指浮点运算次数;2.如何计算?在AlexNet中某一次卷积过程中,输入特征图大小:[C_in, H_in, W_in] = 3 * 224 * 224卷积核大小:[C_in, K_H, K_...原创 2019-07-15 18:08:21 · 4740 阅读 · 0 评论 -
Pytorch搭建循环神经网络(RNN)实现MNIST手写数字识别(1)
循环神经网络(Recurrent Neural Network)让模型充满记忆力,在序列问题和自然语言处理等领域取得很大的成功。RNN目前使用最多的两种变式:LSTM和GRU以上2种变式都能够很好地解决长时依赖问题。LSTM:Long Short Term Memory Networks,长的短时记忆网络它解决的仍是短时记忆问题,只不过这种短时记忆网络比较长,能在一定程度解决长时依赖的问...原创 2019-07-07 13:30:59 · 4691 阅读 · 4 评论 -
Pytorch搭建循环神经网络(RNN)实现MNIST手写数字识别(2)
# -*- coding: utf-8 -*-"""Created on Sun Jul 7 12:45:39 2019@author: ZQQ参考:https://github.com/L1aoXingyu/pytorch-beginner/blob/master/05-Recurrent%20Neural%20Network/recurrent_network.py"""i...原创 2019-07-07 16:45:36 · 1275 阅读 · 0 评论