- 博客(67)
- 问答 (3)
- 收藏
- 关注
原创 fatal error C1083: 无法打开包括文件: “ComCallPython”: No such file or directory
报错:1>D:\jjh\HM-16.5\source\Lib\TLibEncoder\TEncCu.h(53,10): fatal error C1083: 无法打开包括文件: “ComCallPython.h”: No such file or directory。摸索出的正确方法:先把其他项目中的文件拷贝到该工程正确的目录下,然后再添加现有项。在配置编码器时,当我想新增一个cpp文件,
2024-01-27 10:43:45 331
原创 ./bin/hdfs dfs -rm -r input ./bin/hdfs dfs -put ./wordfile1.txt input
【代码】【无标题】
2023-12-18 18:55:55 625
原创 Linux学习记录
从左至右,1-3位字符代表文件所有者的权限,4-6位字符代表同组用户的权限,7-9字符代表其他用户的权限。它曾经也广为使用,但在 2003 年 Red Hat 公司停止了对它的维护,转而将精力都投身于其企业版 Red Hat Enterprise Linux(简称 RHEL)上,Red Hat Linux 自此完结,而商业市场导向的 RHEL 维护至今。不同的发行版之间除了 Linux 内核以外的其它部分都有可能不一样,因此有的时候我们对比某两种发行版的时候会觉得它们看起来像是完全不一样的操作系统,
2023-11-25 21:13:24 314
原创 CNN-based Prediction of Partition Path for VVC
一般来说,对于较低的分辨率,部分CTU占据的帧区域的比例较大,导致在较小的分辨率上使用快速分区方法时加速较小。值得注意的是,我们的方法是该领域最轻量级的方法之一,使得我们的方法能够适应更快的编解码器。这些模型之间的唯一区别在于它们的输入:第一个模型 PIX-CNN 将两个参考 CTU 的像素作为输入,而第二个模型 MVF-CNN 使用我们提出的 MS-MVF 作为输入。**值得注意的是,在[19]和[21]中,使用的一个关键特征是运动场,它包括为每个 4x4 子块计算的运动向量,引用最近的帧。
2023-11-05 14:46:21 978 1
原创 ELIC: Efficient Learned Image Compression with Unevenly Grouped Space-Channel Contextual Adaptive
最近,学习的图像压缩技术已经取得了显着的性能,甚至超过了最好的手动设计的有损图像编码器。它们有望被大规模采用。出于实用性的考虑,对学习图像压缩的架构设计(包括压缩性能和运行速度)进行彻底的研究是至关重要的。在本文中,我们首先提出了不均匀通道条件自适应编码,其灵感来自于学习图像压缩中能量压缩的观察。将所提出的不均匀分组模型与现有的上下文模型相结合,我们获得了空间通道上下文自适应模型,以在不损害运行速度的情况下提高编码性能。
2023-09-18 20:16:01 1492
原创 END-TO-END、SCALE HYPERPRIOR、Checkerboard梳理总结
VARIATIONAL IMAGE COMPRESSION WITH A SCALE HYPERPRIOR》超先验,它通过在熵模型之前引入额外的神经网络模型来提高熵模型的表达能力。随机掩码模型的玩具实验,实验结果表明:参考的特征数量与码率的节省效果不是强相关的。之前是对整体潜在特征进行建模,即一个熵模型在推理阶段应用在所有的特征值熵,而超先验架构为每个特征点都进行了熵模型建模。于是就设计了棋盘格模型,经随机掩码模型测试,节省的码率比之前的自回归要好,但是有新的问题,即双向引用。如何用得到的模型做编解码?
2023-08-14 20:21:12 1655
原创 VARIATIONAL IMAGE COMPRESSION WITH A SCALE HYPERPRIOR
我们描述了一种基于变分自动编码器的端到端可训练图像压缩模型。该模型结合了超先验来有效捕获潜在表示中的空间依赖性。这个超先验与辅助信息有关,这是一个几乎所有现代图像编解码器都通用的概念,但在使用人工神经网络 (ANN) 的图像压缩中很大程度上尚未得到探索。与现有的自动编码器压缩方法不同,我们的模型与底层自动编码器联合训练复杂的先验。我们证明,当使用流行的 MS-SSIM 指数测量视觉质量时,该模型可以实现最先进的图像压缩,并且当使用更传统的基于度量的评估时,其率失真性能超过已发布的基于 ANN 的方法。
2023-08-12 14:02:40 2409 1
原创 VAE、 EM、KL散度
如上图所示,现在在给两张图片编码的时候加上一点噪音,使得每张图片的编码点出现在绿色箭头所示范围内,于是在训练模型的时候,绿色箭头范围内的点都有可能被采样到,这样解码器在训练时会把绿色范围内的点都尽可能还原成和原图相似的图片。然后我们可以关注之前那个失真点,现在它处于全月图和半月图编码的交界上,于是解码器希望它既要尽量相似于全月图,又要尽量相似于半月图,于是它的还原结果就是两种图的折中(3/4全月图)。假如在AE中,一张满月的图片作为输入,模型得到的输出是一张满月的图片;m对应原来AE中的code,
2023-08-08 22:03:36 1644
原创 面向视频会议场景的 H.266/VVC 码率控制算法研究
论文标题面向视频会议场景的 H.266/VVC 码率控制算法研究发表期刊硕士电子期刊作者余东航发表日期2022 -5-25阅读日期2023.8.3评分Score类型思路批注研究背景本文的主要内容是什么?目前研究情况是什么?随着人们对高清视频画质的需求越来越高,现有的视频压缩技术需要进一步优化才能适应不断增加的应用需求。VVC的码率控制模块所分层次与 HEVC 码率控制模块相同,而具有实际研究价值的主要为帧层和 LCU 层,
2023-08-04 20:43:16 2219 2
原创 Kaggle狗图像分类实战
使用 DataLoader 将 ImageFloder 加载的数据集处理成批量(batch)加载模式。果然发现data下面多了train_vaild_test文件夹,里面分了三个文件夹。使用ImageFlolder加载数据集中的图像,并使用指定的预处理操作来处理图像。我把data文件夹里面的所有的文件夹删了,然后把图像放在data文件夹下。发现在train_vaild_test文件夹中多了test文件夹。所以我新建了一个train文件夹,把图像放进去。然后新建了一个test文件夹,运行成功。
2023-08-03 10:45:45 1762
原创 H.265/HEVC 速率控制
使用缓冲区的视频编码速率控制的基本思想如下:如果实际编码速率比可用的信道带宽高,则多余的比特会在缓冲区中积累。视频传输带宽通常都会受到一定限制,为了在满足信道带宽和传输时延限制的情况下有效传输视频数据,保证视频业务的播放质量,需要对视频编码过程进行速率控制。目前实际的视频编码率失真优化过程包括两部分:速率控制部分将视频序列分成编码单元,考虑编码单元的相关性通过码率分配技术确定每个编码单元目标码率,根据目标码率独立确定关键编码参数——量化参数;视频的编码速率与编码参数、编码结构、视频内容等诸多因素密切相关,
2023-08-01 13:08:37 2092
原创 H.265/HEVC 率失真优化
在实际应用中,研究信息率失真函数R(D)是为了在已知信源和允许失真度的条件下,使信源必须传送给信宿信息的传输速率最小,即用尽可能少的码符号尽快地传送尽可能多的消息,以提高通信的有效性,这是信源编码问题。不同的编码参数可以得到不同的率失真性能,最优的编码方案就是在编码系统定义的所有编码参数中使用能够使系统性能最优的参数值, 视频编码系统中的率失真优化就是基于率失真优化理论。在实际编码系统中,通常对系统的编码复杂度、延时和内存等都有一定的要求,因此实际系统的最优性能并不能达到率失真曲线定义的理论值。
2023-07-31 15:40:58 2010
原创 关联规则&&独热编码
经过大量实际调查和分析,揭示了一个隐藏在“尿布与啤酒”背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。支持度是个百分比,它指的是某个商品组合出现的次数与总次数之间的比例。**关联规则(Association Rules)**是反映一个事物与其他事物之间的相互依存性和关联性,是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。提升度代表的是“商品 A 的出现,对商品 B 的出现概率提升的”程度。
2023-07-29 12:38:11 1861
原创 Java期末复习基础题&&编程题
2、 java程序的入口是main方法,所以被定为public的这个类里一定是含有main方法的类,而且该类的名称要和文件名一致,因为虚拟机开始要找main的。当时复制输入数据的时候,发现最后一个query后的值不会输出,debug了好久迟迟发现不了什么问题,以为是代码出现了问题,最后发现还要按一下回车才行。为什么用c++写最后的size要乘2呢,而java直接就是size呢,按代码分析理应是两个都需要*2的,因为一正一负,而存入set中的都是正的。第三个坑:如果没有这行代码,此时是没有影响的,因为有。
2023-07-28 13:19:48 2374
原创 Java课程期末复习&&学习总结
JAVA课程学习总结知识点总结Eclipse如何与GitHub连接1.前期准备2.远程建库3.本地操作常用DOS命令数组正则表达式继承多态向上转型向下转型多态的应用抽象方法抽象类与接口的异同点从设计理念层面分析集合框架ListSetMap内置APIObject 类包装器类型 (Wrapper类)字符串文件File类Stream流1.FileWriter和FileReader2.BuffredReader和BufferedWriter3.FileInputStream和FileOutputStream。
2023-07-28 13:17:51 1857
原创 Lua语法学习
Lua 中有 8 个基本类型分别为:nil、boolean、number、string、userdata、function、thread 和 table。number: 表示双精度类型的实浮点数string:可由一对单引号或双引号表示fuction:由C或Lua编写的函数userdata:表示任意存储在变量中的C数据结构thread:表示执行的独立线路,用于执行协同程序table:Lua 中的表(table)其实是一个"关联数组"(associative arrays),
2023-07-27 11:47:45 3366
原创 罗布乐思Roblox学习笔记
关键就是遍历的时候怎么实现按下一题才进行下一步循环。Scale是比例尺,而Offset是偏移量,如果用鼠标拖的话,移动的是Offset,这样的话,如果是手机来玩的话,这个界面就可能会超出边框了,所以必须要用比例尺,但是如果用比例尺,就要自己一个一个打上去然后调试很麻烦,这时候,就用到了AutoScale Lite插件。1.一开始在客户端假设钱是15,然后点+号,发现在客户端显示钱是变成25了,但是在按购买的时候发现,此时的钱还是15,按加号并不会影响实际钱的数量,此时发现25只是在客户端,并未在服务器。
2023-07-27 11:42:18 8963
原创 Neo4j图数据库基本操作
若要删除节点,则需要删除与节点相关的所有边,这与图论一致——不存在没有节点的边。因此要删掉金轮法王这个节点,就先需要找到该节点和所在关系,再进行删除。这里要注意的是,因为不存在孤立的关系,所以若要删除一个带关系的节点,需要同时删除该节点所有的关系。如果通过菜找食材再找营养素的话,这两个数据是分开的,有些食材在另一个数据里是没有的。,因此,在对图数据进行添加时,若想要跳过已存在的节点或关系,使用。因此,若要清空数据库,即删除所有的节点和关系,可以先使用。中的 a,b 节点,则需要同时删除关系 d,e。
2023-07-27 11:35:39 2981
原创 动态规划各种背包问题刷题
在项链上有N颗能量珠。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为(Mars单位),新产生的珠子的头标记为m,尾标记为n。直接开两层的数组,好像有圆环的话用这种做法挺多的,比如说1234,就开12341234,即可以满足1234 2341 3412 4123这几种不同的合并方式,然后分别对这些不同的序列求最小值,然后求这n种情况的最小值即可。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
2023-07-27 11:29:41 1870
原创 算法刷题记录
文章目录cf题目记录773772122 B题126大二题目记录训练赛题目第一次天梯赛第二次天梯赛第三次天梯赛第四次天梯赛牛客浙农林牛客上海理工浙大训练赛leetcodecf题目记录773A题给定三个坐标就是让你求两个y相同时x的差,这个y要是最大的y#include <bits/stdc++.h>#include <iostream>#include <algorithm>using namespace std;struct nott{ int x
2023-07-27 11:22:02 1675
原创 Camp算法刷题记录2
这里要搞清楚的是肯定是连续的,而不是间断的,即不存在123超过w但是13满足的情况,因为如果说123超了,就说明12肯定满足了,因为这时的每个物品的体积都小于w/2(因为如果有一个物品体积>w/2&&
2023-07-27 11:16:43 1690
原创 Camp算法刷题记录1
Camp文章目录Campday1day2day3day4107 饿饿饭饭201202203 最大和上升子序列205 跳跳106 订单编号206 异或和或207 01序列加一302 序列维护305删删饿饿饭饭2401子串分支和402锦标赛(思维题哇)404 可重排列day1输入n,输出n行n列的由+和.组成的正方形,其中最外面一圈全是+,第二圈全是.,…,对于第ii圈,如果ii是奇数,那么全是+,否则全是.void solve(){ int n,x; cin>>n; for(in
2023-07-27 11:11:16 1719
原创 High-Efficiency Lossy Image Coding Through Adaptive Neighborhood Information Aggregation
随后,在各自的 H.264/AVC [36]、HEVC [6] 和 VVC [13] 的配置文件中采用了类似 DCT 的整数变换 [35] 来处理预测残差。自20世纪70年代以来,大量的研究致力于推进变换模块,从第一个离散余弦变换(DCT)[19]到混合内部预测/变换(HiPT),它在可变大小的树块[16],[21],[22]上应用空间内预测和残差DCT,并使用注意优化的卷积神经网络(CNN)[3],[9],[23]进行非线性神经变换。过去的探索建议我们自适应地利用邻域依赖来更好地转换[20],[22]。
2023-07-26 19:01:11 1758
原创 端到端的视频编码方法及码率控制算法
深度强化学习结合了深度学习和强化学习各自的优点,能够处理强化学习不能处理的复杂任务。深度强化学习算法主要有基于价值的(Value-based)算法和基于策略的(Policy-based)算法,以及两者的结合演员-批评家(Actor-Critic)算法。
2023-07-26 14:34:13 2660
原创 JPEG有损压缩
JPEG把一张图片分割成多个8*8的矩阵,然后把各个元素减去128,使得值域中心为零。取图片某一行,然后每个像素点的值的范围都是0-255,然后把他画成表格。所以压缩的思路就是:去除图片中的高频信息。假设我把左边函数乘以系数-1翻转,那对应的。左上角的系数是最大的,这个性质叫做能量集中。假设我把左边函数进行上下平移,那对应的。假设频率为0,即对应的就是常值信号。假设我把左边函数的振幅增加,那对应。的系数会发生相应的变化,如下图所示。假设我们改变左边函数的频率。这里采样的方式是,0~X0~X7是权重系数。
2023-07-12 10:53:25 1712
原创 Python.\..\./../的区别
学习PointNet论文(https://arxiv.org/abs/1612.00593)并实践。在根目录(F盘)下面找utils了。当我再进入下一级目录,然后再使用。他找的还是F盘下面的util。
2023-07-06 15:50:34 1583
原创 帧内帧间预测
lib文件(特指随dll文件生成时产生的.lib文件)提供了链接时需要的符号和引用信息。会被完整地复制到最终的可执行文件中,以便在编译和链接过程中正确地引用和链接dll中的目标函数。,包含了类、函数、变量的声明,用于在源代码文件中引用和访问这些声明。当#include 报错时,即为.h文件没正确配置。然后对比使用SVM和没用SVM前后的区别,SVM即一种快速搜索的方法,发现用了SVM后的时间减少了。,包含了编译好的目标代码,在程序运行时被加载进内存中。
2023-07-05 22:27:48 1791
原创 END-TO-END OPTIMIZED IMAGE COMPRESSION论文阅读
我们描述了一种图像压缩方法,包括非线性分析变换、均匀量化器和非线性合成变换。这些变换是在卷积线性滤波器和非线性激活函数的三个连续阶段中构造的。与大多数卷积神经网络不同,受用于模拟生物神经元的网络的启发,选择联合非线性来实现一种局部增益控制形式。使用随机梯度下降的变体,我们在训练图像数据库上联合优化整个模型的率失真性能,引入量化器产生的不连续损失函数的连续代理。在某些条件下,松弛损失函数可以解释为由变分自动编码器实现的生成模型的对数似然。
2023-07-04 22:39:23 3073
原创 在Ubuntu环境下安装anaconda(很简单!!!!!)
想要使用tensorflow-compression,但是这个在windows下不支持。那我只好去Ubuntu环境下的安装anaconda。但是!!!!!找了半天,都没找到好的安装教程,浪费了一下午,心态崩溃。最后终于在b站找到视频,其实很简单!!!!!!!是我太笨了。
2023-07-04 18:08:11 4803
原创 视频编码基础知识及环路滤波
其中,形容结果的两项指标往往联合使用,因为单纯的高质量和单纯的低码率都很难说明编码性能如何,一般公认的是固定单一变量来对比另一个变量,例如相同视频质量下的码率变化率(BD-BR)或相同码率下的 PSNR 变化量(BD-PSNR)。峰值信号的能量与噪声的平均能量之比,通常表示的时候取log变成分贝,由于MSE为真实图像与含噪图像之差的能量均值,而两者的差即为噪声,因此PSNR即峰值信号能量与MSE之比。个人见解:码率一定,即单位时间内使用的数据流量一定,如果分辨率越大,那说明颜色深度越小,就说明越糊?
2023-07-04 16:06:44 2295
原创 AOM、VTM初体验及安装tensorflow
当你用不同的语言或者编译器开发一个项目,各就各位code完之后要生成最终的输出(dll 或执行文件),这时候就尴尬了,你要手动去MingGW或者GCC下配置成千上万的.cpp .h .o .c…打个比喻,小明在路边卖煎饼赚了300万准备买房,但是小明这一麻袋的5毛、一块、十块、五十、一百售楼处的小姐姐嫌麻烦不想收这些钱,那怎么办呢?然后进入该文件,要把InputFile的地址改成你测试序列文件的地址,后缀是yuv。查看自己显卡和python的版本,然后安装对应的cuda和cudnn。
2023-07-03 19:50:48 1693
原创 视频编码及图像基础知识
视频行业常见的分辨率,我们比较熟悉的360P (640x360)、720P (1280x720)、1080P (1920x1080)、4K (3840x2160)、8K (7680x4320)存储颜色的强度,需要占用一定大小的数据空间,这个大小被称为颜色深度。例如,一段每秒 30 帧,每像素 24 bits,分辨率是 480x240 的视频,如果我们不做任何压缩,它将需要。),那么颜色深度就是 24(8*3)bit(因为RGB三个颜色),我们还可以推导出我们可以使用。第二个参数代表第一行分成几块。
2023-07-03 18:50:53 2476
原创 AlexNet实战
之前学了挺多卷积神经网络模型,但是都只停留在概念。代码都没自己敲过,肯定不行,而且这代码也很难很多都看不懂。所以想着先从最先较简单的AlexNet开始敲。不过还是好多没搞明白,之后逐一搞清楚。
2023-07-02 21:41:02 1579
原创 MobileNet
我们提出了一类有效的模型,称为MobileNets,用于移动和嵌入式视觉应用。MobileNets 基于流线型架构,该架构使用深度可分离卷积来构建轻量级深度神经网络。我们引入了两个简单的全局超参数,可以有效地权衡延迟和准确性。这些超参数允许模型构建器根据问题的约束为其应用程序选择正确的大小模型。我们对资源和准确性权衡进行了广泛的实验,并在 ImageNet 分类上展示了与其他流行模型相比的强大性能。
2023-06-28 15:07:35 1561
原创 SENet
SENet,胡杰(Momenta)在2017.9提出,通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力,即,通道维度上的注意力机制。SE块以微小的计算成本为现有的最先进的深层架构产生了显著的性能改进,SENet block和ResNeXt结合在ILSVRC 2017赢得第一名。SENet模型是一种通过自适应地重新加权输入特征图的通道来增强模型表达能力的卷积神经网络结构。由胡杰等人在2018年提出。SENet的核心思想是通过一个“
2023-06-28 09:47:19 1598
原创 DenseNet和FractalNet
作为CVPR2017年的Best Paper, DenseNet脱离了通过加深网络层数(VGG,ResNet)和加宽网络结构(GoogLeNet)来提升网络性能的定式思维, 从特征的角度考虑, 通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了梯度弥散问题的产生. 结合信息流和特征复用的假设, DenseNet当之无愧成为2017年计算机视觉顶会的年度最佳论文。另外,本文还对FractalNet进行了介绍,FractalNet与DenseNet的设计思想有异曲同工之妙。
2023-06-27 20:43:08 1539
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人