学习笔记
文章平均质量分 92
厨神下饭味道鲜
这个作者很懒,什么都没留下…
展开
-
11.5学习笔记
face_recognition 介绍face_recognition 是一个非常流行的 Python 库,专门用于人脸识别任务。它基于 dlib 库和 HOG(Histogram of Oriented Gradients)特征以及深度学习模型,提供了简单易用的接口来进行人脸检测、面部特征点定位和人脸识别。face_recognition 库由 Adam Geitgey 开发,旨在简化人脸识别任务,使其更加容易上手。主要功能 人脸检测: 检测图像中的人脸位置。 支持原创 2024-11-05 19:29:09 · 905 阅读 · 0 评论 -
11.1学习笔记
在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV 提供了许多图像预处理的函数和方法,以下是一些常见的图像预处理操作:图像空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学。原创 2024-11-01 20:07:07 · 742 阅读 · 0 评论 -
10.25学习笔记
重置索引(reindex)可以更改原 DataFrame 的行标签或列标签,并使更改后的行、列标签与 DataFrame 中的数据逐一匹配。reindex_like 方法用于将一个 DataFrame 或 Series 的索引重新排列,使其与另一个 DataFrame 或 Series 的索引相匹配。'right':右连接,返回右侧 DataFrame 的所有键,以及左侧 DataFrame 匹配的键。'left':左连接,返回左侧 DataFrame 的所有键,以及右侧 DataFrame 匹配的键。原创 2024-10-25 19:30:17 · 839 阅读 · 0 评论 -
10.22学习笔记
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。这要求维数相同,且各维度的长度相同,如果不相同,可以通过广播机制,这种机制的核心是对形状较小的数组,在横向或纵向上进行一定次数的重复,使其与形状较大的数组拥有相同的维度。维度匹配:如果两个数组的维度数不同,维度数较少的数组会在前面补上长度为 1 的维度。长度匹配:如果两个数组在某个维度上的长度不同,但其中一个数组在该维度上的长度为 1,则该数组会沿着该维度进行广播。原创 2024-10-22 18:55:56 · 1016 阅读 · 0 评论 -
10.14学习笔记
设 A 是一个 m×n 的矩阵,B 是一个 n×p 的矩阵,那么它们的乘积 C=A×B 是一个 m×p 的矩阵,其中 C 的第 i 行第 j 列的元素定义为:其中是矩阵 A 的第i行第 k 列的元素,是矩阵 B 的第 k 行第j 列的元素。原创 2024-10-14 16:41:57 · 1159 阅读 · 0 评论 -
10.12学习笔记
以3阶行列式为例:从上述公式可以看出:3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘aij元素的行标i都是123的自然排列aij元素列标j则为:123、231、312、321、213、132,总数为3!=6分别计算列标排列的逆序数:N(123) = 0 偶数N(231) = 1 + 1 = 2 偶数N(312) = 2 偶数N(321) = 2 + 1 = 3 奇数N(213) = 1 奇数N(132) = 1 奇数。原创 2024-10-12 19:12:36 · 943 阅读 · 0 评论 -
10.11学习笔记
事件可以定义为随机变量取特定值的集合。一般用{X=k}表示。例如,如果随机变量 X 表示掷骰子的结果,那么事件 "掷得奇数" 可以表示为 {X=1} 或 {X=3}或 {X=5}。原创 2024-10-11 20:52:26 · 880 阅读 · 0 评论 -
10.8学习笔记
给定一个函数 f:X→Y,如果存在一个函数 g:Y→X,使得对于 X 中的每一个 x,都有 g(f(x))=x,并且对于 Y 中的每一个 y,都有 f(g(y))=y,则称 g 为f 的反函数,记作。原创 2024-10-08 19:43:10 · 969 阅读 · 0 评论 -
10.9学习笔记
定积分表示函数 f(x)在区间 [a,b]上的累积效应或面积。分割区间: 将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中,且。取样本点: 在每个小区间内取一个样本点。构造黎曼和: 构造黎曼和,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。取极限。原创 2024-10-09 19:44:43 · 1137 阅读 · 0 评论 -
10.10学习笔记
事件是指在某个试验或观察中可能发生的结果或结果的集合。是样本空间的一个子集,可以包含一个或多个样本点,也可以是整个样本空间。事件用大写字母,如 A,B,C 等表示。基本事件是指试验中不可再分的最简单的事件。每个基本事件代表一个单一的可能结果。例子:抛一枚硬币:基本事件是“正面”和“反面”。掷一个六面骰子:基本事件是“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。复合事件是由多个基本事件组合而成的事件。复合事件代表多个可能结果的集合。例子:抛两枚硬币:复合事件可以是“至少一个正面”,这个事件包含“原创 2024-10-10 17:24:40 · 1156 阅读 · 0 评论