10.12学习笔记

行列式

1.什么是行列式

行列式是一个数学概念,主要用于线性代数中,它是一个可以从方阵(即行数和列数相等的矩阵)形成的一个标量(即一个单一的数值)。

2.二阶行列式

二阶行列式定义:

det(A)=\begin{vmatrix} a_{11}\, \, a_{12} \\ a_{21}\, \, a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}

a_{ij}叫做行列式的元素,i为行标,j为列标

3.三阶行列式

三阶行列式:

det(A)=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}

对角线法则计算:

\begin{aligned}\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}\\ -a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}\end{aligned}

4.n阶行列式

4.1 排列

排列是指从一组元素中选出若干个元素,并按照一定的顺序排列起来。对于一个包含 n 个元素的集合,其所有元素的全排列数目是 n!(即 n 的阶乘)。例如,集合 {1,2,3}的全排列有 3!=6种,分别是:

(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)

4.2 逆序

逆序是指在一个排列中,如果一个较大的数排在一个较小的数前面,则称这两个数构成一个逆序。逆序的总数称为逆序数。逆序数可以帮助我们理解排列的“混乱”程度。

例如,在排列 (3,1,4,2) 中,逆序有:

  • 3 和 1 构成一个逆序

  • 3 和 2 构成一个逆序

  • 4 和 2 构成一个逆序

因此,这个排列的逆序数是 3。逆序的表示符号为N或者为τ(读作涛)

逆序数的计算

计算一个排列的逆序数可以通过遍历排列中的每一对元素来实现。具体步骤如下:

  1. 对于排列中的每一个元素,计算它后面有多少个比它小的元素。

  2. 将这些计数相加,得到总的逆序数。

例如,计算排列 (3,1,4,2)的逆序数:

  • 元素 3 后面有2比它小的元素(1, 2),逆序数为 2。

  • 元素 1 后面没有比它大的元素,逆序数为 0。

  • 元素 4 后面有1个比它大的元素(1),逆序数为 1。

  • 元素 2 是最后一个元素,逆序数为 0。

总的逆序数为N2+0+1+0=3

4.3 奇排列和偶排列

如果一个排列的逆序数是奇数,则称该排列为奇排列;如果是偶数,则称该排列为偶排列。

例如:

        N(1432) = 3,则1432为奇排列;N(4321)=6,则4321为偶排列

4.4 对换

对排列中的任意两个元素进行交换(称为对换),会改变排列的奇偶性。即,奇排列经过一次对换变成偶排列,偶排列经过一次对换变成奇排列。

例如:

        N(651243)=10,为偶排列,将5和1兑换,则N(615243)=9,为奇排列

4.5 n阶行列式定义

以3阶行列式为例:

det(A)=\begin{aligned}\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}\\ -a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}\end{aligned}

从上述公式可以看出:

3阶行列式按行展开后为6项,每项为3个不同行不同列的3个元素相乘

aij元素的行标i都是123的自然排列

aij元素列标j则为:123、231、312、321、213、132,总数为3!=6

分别计算列标排列的逆序数:

N(123) = 0 偶数

N(231) = 1 + 1 = 2 偶数

N(312) = 2 偶数

N(321) = 2 + 1 = 3 奇数

N(213) = 1 奇数

N(132) = 1 奇数

通过观察公式可以看出,逆序数为偶数的排列的运算符号为+,为奇数的排列的运算符号为-

总结:

1.行标取自然排列

2.不同行不同列的3个元素相乘

3.列标取排列的所有可能

4.列标排列的逆序数的奇偶性决定运算符号,逆序数为偶数的运算符号为+,奇数的运算符号为-

从3阶行列式扩展到n阶行列式:

det(A)=\left| a_{ij}\right| =\begin{vmatrix} a_{1}a_{2}\ldots a_{n} \\ \vdots \\ a_{n1}a_{n2}\ldots a_{nn} \end{vmatrix}

其中,aij是行列式的元素,i是行标,j是列标

定义:

1.按行展开:

\left| a_{ij}\right|=\begin{vmatrix} a_{1}a_{2}\ldots a_{n} \\ \vdots \\ a_{n1}a_{n2}\ldots a_{nn} \end{vmatrix} =\sum _{j_{1}j_{2}\ldots j_{n}}\left( -1\right)^{N\left( j_{1}j_{2}\ldots j_{n}\right) } {a_{1j_{1}}a_{2j_{2}}\ldots a_{nj_{n}}}

  1. 行标取自然排列

  2. 不同行不同列的n个元素相乘

  3. 列标取排列的所有可能

  4. 列标排列的逆序数的奇偶性决定运算符号,逆序数为偶数的运算符号为+,奇数的运算符号为-

2.按列展开

\left| a_{ij}\right|=\begin{vmatrix} a_{11}a_{12}\ldots a_{1n} \\ \vdots \\ a_{n1}a_{n2}\ldots a_{nn} \end{vmatrix} =\sum _{i_{1}i_{2}\ldots i_{n}}\left( -1\right)^{N\left( i_{1}i_{2}\ldots i_{n}\right) } {a_{i_{1}1}a_{i_{2}2}\ldots a_{i_{n}n}}

与按行展开类似,只是展开时行变成列:

  1. 标取自然排列

  2. 不同行不同列的n个元素相乘

  3. 标取排列的所有可能

  4. 标排列的逆序数的奇偶性决定运算符号,逆序数为偶数的运算符号为+,奇数的运算符号为-

4.6 特殊n阶行列式

1.行列式某一行(列)全为0,则行列式为0

\begin{vmatrix} a_{11} & a_{12}\ldots & a_{1n} \\ & \vdots & \\ 0 & 0\ldots & 0 \\ & \vdots & \\ a_{n1} & a_{n2}\ldots & a_{nn} \end{vmatrix}=0

2.三角形行列式等于对角线元素的乘积

\begin{vmatrix} a_{11}\\ a_{21} & a_{22} & & \\ \vdots & & \ddots & \\ a_{n1} & \ldots & & a_{nn} \end{vmatrix}=\begin{vmatrix} a_{11} & a_{12}\ldots & a_{11} \\ & a_{22}\ldots & a_{2n} \\ & \ddots & \vdots \\ & & a_{nn} \end{vmatrix}\, \,  \, \, =\begin{vmatrix} a_{11}\\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{vmatrix}=a_{1}a_{22}\ldots a_{nn}

5.行列式性质

性质1:行列式的转置等于行列式本身。

det(A)^T=det(A)

其中,A是一个方阵,A^T表示 A 的转置矩阵。

这个性质的证明可以通过行列式的定义和性质来进行。转置行列式的列是行列式的行,即转置行列式按列展开得到的排列和逆序数与行列式按行展开得到的排列和逆序数一样,因此行列式的值保持不变。

性质2:交换行列式的两行会导致行列式的值变为其原来的相反数。

设 A是一个 n×n的行列式,如果交换 A的第 i 行和第 j 行(其中 i≠j),得到的新矩阵记为 B,那么有:

det(B)=-det(A)

交换两行相当于在排列中交换两个元素,这会改变逆序数的奇偶性,从而使得行列式的值变为其原来的相反数。

推论:行列式两行(列)相等,则行列式为0

性质3:用k乘以行列式某一行的所有元素,等于用k乘以行列式

det(A)=\left| a_{ij}\right|=\begin{vmatrix} a_{11} a_{12}\ldots a_{1n} \\ \vdots \\ ka_{s1} ka_{s2}\ldots ka_{sn} \\ \vdots \\ a_{n1} a_{n2}\ldots a_{nn} \end{vmatrix}  =k\begin{vmatrix} a_{11} a_{12}\ldots a_{1n} \\ \vdots \\ a_{s1} a_{s2}\ldots a_{sn} \\ \vdots \\ a_{n1} a_{n2}\ldots a_{nn} \end{vmatrix}

推论:如果行列式的某一行(或某一列)的所有元素都有公因子 k,那么这个公因子 k可以提取到行列式外面一次。

推论:如果一个行列式的两行(或两列)对应成比例,那么这个行列式的值必定为零。

性质4:如果一个行列式的某一行(或某一列)是两个数之和,那么这个行列式可以表示为两个行列式的和。

数学符号表示为:

设 A 是一个 n×n 的矩阵,如果 A 的第i行的每个元素是两个数之和,即第i行的每个元素可以表示为

a_{ij}=b_{ij} + c_{ij}

那么矩阵 A 可以分解为两个矩阵 B 和 B,其中 B 的第 i 行的每个元素是 b_{ij},C 的第 i行的每个元素是 c_{ij},其余行与A 相同。那么有:

det(A)=det(B)+det(C)

性质:将行列式的某一行(列)乘以一个数加到另一行(列)上,行列式的值保持不变。(常用)

6.代数余子式

余子式:

给定一个 n×n的矩阵 A,其第 i 行第j 列的元素 a_{ij} 的余子式 M_{ij} 是指去掉第i行和第j列后得到的 (n−1)×(n−1) 子矩阵的行列式。

具体步骤如下:

  1. 选择元素:选择矩阵 A中的一个元素 a_{ij}

  2. 构造余子矩阵:去掉矩阵 A 的第 i 行和第 j 列,得到一个 (n−1)×(n−1) 的子矩阵。

  3. 计算行列式:计算这个 (n−1)×(n−1) 子矩阵的行列式,这个行列式就是元素 a_{ij} 的余子式 M_{ij}

余子式的一个重要应用是计算行列式的值。行列式 det⁡(A)可以通过任意一行或一列的元素与其对应的余子式和代数余子式的乘积之和来计算。

代数余子式:

给定一个 n×n 的矩阵 A,其第i行第j列的元素a_{ij} 的代数余子式 C_{ij} 定义为:

C_{ij}=(-1)^{i+j}\cdot M_{ij}

其中,M_{ij} 是元素 a_{ij} 的余子式,即去掉矩阵 A的第i 行和第 j 列后得到的 (n−1)×(n−1)子矩阵的行列式

具体步骤如下:

  1. 选择元素:选择矩阵 A 中的一个元素 a_{ij}

  2. 构造余子矩阵:去掉矩阵 A 的第i 行和第 j 列,得到一个 (n−1)×(n−1)的子矩阵

  3. 计算行列式:计算这个 (n−1)×(n−1)子矩阵的行列式,这个行列式就是元素 a_{ij}的余子式 M_{ij}

  4. 计算代数余子式:根据公式

    C_{ij}=(-1)^{i+j}\cdot M_{ij}

    计算代数余子式

代数余子式的一个重要应用是计算行列式的值。根据拉普拉斯展开定理,行列式 det⁡(A)可以通过任意一行或一列的元素与其对应的代数余子式的乘积之和来计算。

拉普拉斯展开定理:

行列式等于它的某一行元素与其代数余子式的乘积之和。

行列式按第 i 行展开的公式为:

det(A)=a_{i1}C_{i1}+a_{i2}C_{i2}+...+a_{in}C_{in}=\Sigma _{j=1}^{n}a_{ij}C_{ij}

其中,A 是一个 n×n 的矩阵,a_{ij}是矩阵 A 的第 i 行第 j 列的元素,C_{ij} 是元素 a_{ij} 的代数余子式。

代数余子式 C_{ij} 的定义为:

C_{ij}=(-1)^{i+j}\cdot M_{ij}

类似地,行列式也可以按第 j 列展开:

det(A)=a_{1j}C_{1j}+a_{2j}C_{2j}+...+a_{nj}C_{nj}=\Sigma _{i=1}^{n}a_{ij}C_{ij}

7.克莱姆法则

基本概念

假设有一个由 n 个线性方程组成的 n 元线性方程组:

\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}

我们可以将这个方程组写成 AX=B,其中:

A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, \quad X = \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix}, \quad B = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}

克莱姆法则

根据克莱姆法则,如果系数矩阵 A 的行列式 det⁡(A)≠0,那么方程组有唯一解,且解 X 的每一个分量x_i 可以通过以下公式计算:

x_i=\frac{det(A_i)}{det(A)}

其中,A_i 是将矩阵 A 的第i 列替换为向量 B 后得到的新矩阵。

A_{i} = \begin{vmatrix} a_{11} & \cdots & b_{1} & \cdots & a_{1n} \\ a_{21} & \cdots & b_{2} & \cdots & a_{2n} \\ \vdots & \ddots & b_{i} & \ddots & \vdots \\ a_{n1} & \cdots & b_{n} & \cdots & a_{nn} \end{vmatrix}

克莱姆法则前提:

        1.方程个数 = 未知数个数

        2.系数行列式 det(A) \neq 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值