羊车门问题描述:有3扇关闭的门,一扇门后停着汽车,另外两扇门后是山羊,主持人知道每扇门后是什么。参赛者首先选择一扇门。在开启它之前,主持人会从另外两扇门中打开一扇门,露出门后的山羊。然后允许参赛者更换自己的选择。请问,参赛者更换选择后,能否增加猜中汽车的机会?通过设计并编写程序验证,并给出自己的解释。
这是一个随机事件问题,我们可以使用python的random库来模拟参赛者的选择过程,具体代码实现如下:
from random import randint
times = 10000 #模拟选择的次数
pick_first_cnt = 0
pick_change_cnt = 0
for i in range(times):
car = randint(0,2) #哪个门后面藏车
pick_first = randint(0,2) #初始随机选择一扇门
if pick_first == car: #如果直接选中,则初始选择正确,换选择一定不中
pick_first_cnt += 1
else: #如果初始不中,则主持人打开另一扇没车的门后,换选择一定中
pick_change_cnt += 1
pick_first_percent = pick_first_cnt/times*100 #坚持不换选择的胜率
pick_change_percent = pick_change_cnt/times*100 #换选择的胜率
print("坚持初选的胜率为:{:.2f}%,改变初选的胜率为:{:.2f}%".format(pick_first_percent,pick_change_percent))
最后求得参赛者坚持初选的胜率为1/3左右,改变初选的胜率为2/3左右。